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ABSTRACT

The occurrence of missing values is trequent in data collected for different uses such as in
surveys, censuses, balanced experiments. On the other end most statistical analysis methods have
been developed for complete rectangular data. This paper uses a simulated data set to examine
the performance of recently available methods for treating data with missing values. Multiple
imputations (MI) and maximum likelihood (ML) methods through expectation maximization
(EM) were compared with the complete case (CC) analysis which is the default method in
statistical computer packages. The effects of the data treatment methods were examined on the
regression coefficients. The results indicate that ML through EM and M methods are both
superior than the commonly available complete case analysis (CC).
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INTRODUCTION

It is a common place experience of any
practicing statistician to be faced with the
task of analyzing data with missing values.
This is despite the fact that most standard
methods have been developed to analyze
rectangular sets. Missing values are most
frequently encountered with data routinely
collected for data information systems such
as those providing official statistics based on
census and surveys or in clinical records
systems of hospitals. Missing values also
arise by default in data recording activities
which arc designed to give complete records
such as in balanced experiments. The
occurrence of missing values is so frequent
that it has become onc of the most important
problems in statistical analysis (Hartly and
Hacking, 1971). When encountered, missing
values are usually taken as nuisance as they
arc not the main focus of inquiry. The
widespread occurrence of missing values
may be regarded as a necessary cevil
realistically associated with data collection.
However, literature provides plenty of
evidence to reveal that statisticians are

already blessed with complex methodologies
for treating missing data situations in which
alternative methods of analysis are often put
forward and compared.

The traditional theory for estimation in
regression models gives no hint to deal with
missing values in the covariates. Intuitively.
when the subjects with missing covariate
values differ systematically from those with
complete data with respect to the outcome of’
interest, results from a traditional data
analysis omitting the missing cases may no
longer be valid. Because standard techniques
for regression madels require full covariate
information, one simple way to avoid the
problem of missing data is to use the
complete case (CC) analysis where only
those subjects who are completely observed
are used in the analysis. Complete case
analysis is the technique most commonly
used with missing values in the covariates
and/or response, and it is still the default
method in most software packages, despite
the development of statistical methods that
handle missing data more appropriately. The
objective of this paper is to compare
different  miethods  of  treating  missing
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continuous  covarinte data in  multiple
regression when the data is missing at
random. The paper aims to evaluate two
methods in comparison to the complete case
analysis — that is a likelihood based method
which uses Expectation Maximizatian (EM)
algorithm and a Multiple Imputation (MI)
method. The paper describes  general
notation for general linear models (GLM’s)
and explains the likelihood based method
and the multiple imputation method.

General Linear Models
Suppose  that  (x,,y,)e-(x,.7.)

independent observation where cach y, is the

are

response variable and cach x; is a Px1
random vector of covariates. The joint
distribution of (x,,y,) is specified by a
conditional distribution of y, given x, and a
marginal distribution of x,. Suppose [y, | x;}
has a density in the exponential class with
the form:

Py, | x,,8,1) = exp{aiziy 8 ~ BO ) +ely, 7)).i = 1,n

(N
Indexed by the canonical parameter 8 and

the scale parameter 7. The functions b and
¢ determine a particular family in the class,
such as the Binomial, Normal or Poisson.
These functions ¢, (1) are commonly of the
form o ()=t 'k ' where k are the known
weights. Further suppose that the € s satisfy
the equations 8 =6(n,), i=I--,n and
i =X where 7, = x/' are the components
of 7. X is an nxp {ull rank matrix of
covariates,  f=(f,,-.f4,) is a
vector of regression coefficients, and 8 is a
monotone  differentiable  function.  The
model described in equation (1), is called a
general linear model and has proven very
useful in many applications. When 6 =177,

pxl

the link 1s said 10 be a canonical link. The

GLMs include a large class of regression
models, such as nonmal linear regression,
logistic and probit regression, Poisson
regression, gamma regression, and some
proportional hazards meodels (McCullagh
and Nelder, 1989). The complete-data
likelihood for GLM based on all
observations is given by

Ui xp =]l 1%, B

=]
where y=(p,, -, ) and x=(x,---.x,).
The observed data likelihood is abtained by
integrating equation (2) over the missing
values, with respect to the distribution of the
missing values (Little and Rubin, 2002).

Methods of Treating Datn with Missing
Values
Likelihood Based Methods

A large class of model based procedure
arises from defining a model for variables
with missing values and making statistical
inference based on a maximum likelihood
method. An  important issue is the
specification of the covariate distribution. In
missing data problems one should consider
strategies for reducing the number of
nuisance parameters  in  the covariate
distribution (Lipsitz and Ibrahim, 1996;
Ibrahim et al., 1999). In this case if the
missing data mechanism is non ignorable, it
is typical to specify a parametric model for
the missing data  mechanism and to
incorporate it into the complete data log-
likelihoad. Let x, denote the k"™ component
of x,. The missing data mechanism is
defined as the distribution of the pxi
random vector r. whose k™ component r,
equals [ if x, is observed for the subject i,
and 0 if x, is missing. The conditional
distribution  of -
denotedlr |y, x,, 0], is

given  (y,x ),
indexed by the

parameter vector @ and is a multinomial
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distribution with 2" cell probabilitics. The
marginal density of xis denoted by
pix la), where @ is a vector of indexing
parameters. The complete data density of
{y,, x,,r) for subject i is then given by

ply,x.,r | B.a,¢)=ply | x, Bplx, d2)plr Ly, x,,0)

(3)
This leads to the complete data log-
likelihood

=3 105,y =3 Jo{ bty 15, B} +oal gl 17,,x., 41

-l
(4)

where y=(f,a,¢) and i{y;x,,y,,r) is the
distribution to the contribution on the
complete data log-likelihood for the ith
observation. The main interest here is in the
estimation of A, with a and ¢ being
viewed as nuisance parameters. Log-linear is
chosen for specifying multinomial model
plr 1y, x,0).

Estimating Maximum likelihood using EM
Algorithm

The observed data likelihood is generally
difficult to obtain in closed form for most
missing data problems, including GLM. In
this regard, the Expectation Maximization
(EM) algorithm has been a popular
tcchnique for obtaining maximum likelihood
estimates (MLE) in GLM's with missing
covariates. In this paper the EM algorithm
for estimating missing continuous covariates
is used. The E-step for the EM algorithm
used for continuous covariates consists of an
integral, which typically docs not have a
closed form for GLMs. The E-step for the
ith obscrvation would therefore be

Q177 = floglply, | x, Bllptx.., | p,0y.r, 7 1

+ flog{plx, | @)plx,, . | X,y 00 7 5

+Ilog{p(n Ly, . Oplx. | X, v.r ¥ Jdx .
(5

To evaluate equation (3) at the (r+l)"'
iteration of the EM algorithm, a Monte
Carlo version of the EM algorithm as given
by Wei and Turner (1990) is used. To do
this, one must first generate a sample from
P T v ) A staightforward
derivation yields

Py 1o 3 7)o ply e A0 pte ™)

(6)

The product on the right hand side of
equation (6) has an elegant form for efficient
sampling as discussed by Ibrahim et al.
(1999).

Imputation Methods

Dempster and Rubin (1983) stated that the
idea of imputation tempts analysts to believe
that data are complete afier all. This authors
further state that this idea is dangerous
because it results in a situation where the
problem is assumed to be sufficiently minor
such that standard estimators are applied to
the real and imputed data, thus creating
substantial biases. Multiple Imputation (MI)
appears to be one of the most attractive
methods for general purpose handling of
missing data in muitivariate analysis, and
this is the method of interest in this paper.
The basic idea, first proposed by Rubin
(1977) and claborated in his book (Rubin.
1987), is as follows:

(1) Construet M “complete data sets;

(2) Obtain ¥™ for the mth imputed datasct
,m=1,2,..M; and
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Table 1. Effect of missing values on parameter estimation

Full Data Set Complete Case Analysis
Varia Paramete  Standard t-value Paramete Standard t-value
ble r Estimate error r Estimate error
X 0.71564 0.13486 5.31 0.65082 0.27925 2:33
X, 1.29529 0.36802 3.52 0.78319 0.60445 1.30
X -0.15212 0.15629 -0.97 -0.07819 0.30134 -0.26

—a—Full data set —a— Default —4—EM Aléorithm ——MI

standard error

Variable

Figure 1. Comparison of standard crrors for the full data set with the default method, E
algorithm and MI methods

26



Bots ) Agric. Appl. Sci. Vol 3 No. t 2008

RESULTS AND DISCUSSION

Table 1 shows the effects of missing
values on the estimation of regression
coefticients and standard error for a full data
set and a data set with 30% of the values
missing

The results show  that the regression
coefficients estimated for the full data set
are higher than for the missing values data
set, thus the complete case analysis method
underestimates the cocfficients. On the other
hand, the standard errors for the full data sct
are found to be lower than those for the data
set with missing values. These two scenarios
have an effect on hypothesis testing since
the test statistic ¢ is equal 1= % where b,

is the sample regression coefficient and s,

is the sample standard error. This can lead to
a wrong interpretation of the multiple
regressions because it is difficult to tell
which of the variable have an effect on the
dependent variable. The above comparison
shows that the default method in statistical
packages has bias in estimating the muitiple
regression coefficients,

In addition to the default method, applied
statisticians have more choices for analyzing
multiple regression data sets with missing
values, such the EM algorithm in finding the
maximum  likelihood  and  multiple
imputation method. As one of the objectives,
this paper compares the two methods against
the default method to find out which one
gives the best estimate. The best estimate
method is the one that shows the lowest
standard error. Figure 1 shows the results of
the comparison of the standard errors
estimated for the full data sct, default
method, EM algorithm and multiple
imputation method.
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