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Abstract: To predict the variability of dam water levels, parametric Multivariate Linear Regression
(MLR), stochastic Vector AutoRegressive (VAR), Random Forest Regression (RFR) and Multilayer
Perceptron (MLP) Artificial Neural Network (ANN) models were compared based on the influences
of climate factors (rainfall and temperature), climate indices (DSLP, Aridity Index (AI), SOI and
Nifio 3.4) and land-use land-cover (LULC) as the predictor variables. For the case study of the
Gaborone dam and the Bokaa dam in the semi-arid Botswana, from 2001 to 2019, the prediction
results showed that the linear MLR is not robust for predicting the complex non-linear variabilities
of the dam water levels with the predictor variables. The stochastic VAR detected the relationship
between LULC and the dam water levels with R? > 0.95; however, it was unable to sufficiently capture
the influence of climate factors on the dam water levels. RFR and MLP-ANN showed significant
correlations between the dam water levels and the climate factors and climate indices, with a higher
R? value between 0.890 and 0.926, for the Gaborone dam, compared to 0.704-0.865 for the Bokaa dam.
Using LULC for dam water predictions, RFR performed better than MLP-ANN, with higher accuracy
results for the Bokaa dam. Based on the climate factors and climate indices, MLP-ANN provided
the best prediction results for the dam water levels for both dams. To improve the prediction results,
a VAR-ANN hybrid model was found to be more suitable for integrating LULC and the climate
conditions and in predicting the variability of the linear and non-linear time-series components of the
dam water levels for both dams.

Keywords: Bokaa and Gaborone dams (Botswana); dam water levels; land-use land-cover; climate
change; multivariate linear regression; Vector AutoRegressive (VAR); Random Forest Regression;
Multilayer Perceptron ANN; VAR-Neural Network hybrid model

1. Introduction

Despite freshwater scarcity being a global problem, the solutions must be locally
formulated in order to understand the connections between water supply and demand, and
to adequately respond to the local water shortages. Water shortages are being exacerbated
by human activities, as manifested by population growth and the impacts of land-use
changes driven by urbanization, agricultural activities, industrialization, and economic
development. The cumulative effects of the intensification of land-use activities and climate
change continue to pose uncertainty on the availability of water resources, with the effect
of intensified manipulation of the surface and groundwater hydrological regimes [1].
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The monitoring of dam water levels is important, not only to ensure efficient dam
operations, but also for applications related to the integration of reservoir management
schemes, identifying the main factors that influence the dam water level variabilities,
determining the impacts of global climate changes on catchment hydrological systems,
and ensuring sufficient freshwater supply [2,3]. In addition, the accurate monitoring and
prediction of dam water level is important as it relates to the parameters such as inflows into
the dams, dam water storage and water release from the dam reservoirs, evaporation, and
infiltration. These parameters constitute the dam reservoir uncertainties and are important
in dam operations and modelling.

For the simulation, prediction and forecasting of the dam water levels, reliable models
are required [4]. However, the variability of dam water levels results from complex non-
linear processes, which include factors such as precipitation, evaporation, discharge from
tributaries, topographic structure, land use, etc. These influences are more complicated
when the dam has various water supply sources, e.g., precipitation, rivers, wellfields and
supplies from other dams. As such, reliable and accurate prediction of dam water levels is
challenging for hydrologists and water resource managers.

To solve the hydrological time series simulation and prediction problems, numer-
ous techniques have been developed. Such models include the hydrodynamic models
(e.g., MIKE21, CHAM and EFDC), time-series models using ARMA and ARIMA, and soft
computing approaches, e.g., Artificial Neural Networks (ANNSs), Support Vector Regres-
sion (SVR), and model trees [5-7]. While the hydrodynamic models have proven to be
superior in simulating water levels, for accurate and reliable predictions, they require
detailed and calibrated data, complex boundary conditions and parameters as input data,
and are computationally expensive to implement [8-11].

To improve the prediction and forecasting of water levels under data scarcity, soft
computing techniques have been recommended [12,13] because of their ability to capture
complex and non-linear input-output relationships with no explicit knowledge of the
physical processes [12,14]. Further, machine learning (ML) models have been considered
as they can efficiently represent the complex non-linear relationships in the temporally
dynamic system, which are not normally addressed in traditional mathematical models [13].
Additionally, machine learning models can deal with large spatial-temporal data in terms
of scalability, multi-dimensionality, flexibility, efficiency and accuracy. As such, they can
capture not only the primary exogenous parameters that influence the dam water level
variabilities, such as the catchment land-use and land-cover, watershed characteristics,
hydrological variables and climate factors but also the secondary factors, including the
reservoir operational decisions.

In recent decades, numerous machine learning models have been proposed and com-
pared for predicting dam water levels. In [15], the support vector machine (SVM) and
adaptive network-based fuzzy inference system (ANFIS) are compared for the forecasting
of daily reservoir water levels in the Klang gate, in Malaysia, concluding that SVM was
superior to the ANFIS model. In addition, in the Kenyir Dam in Malaysia, Reference [16]
also compared supervised Boosted Decision Tree Regression (BDTR), Decision Forest Re-
gression (DFR), Bayesian Linear Regression (BLR) and Neural Network Regression (NNR)
and showed that BLR and BDTG tree-based ML models were more accurate in predict-
ing the reservoir water levels. Using the wavelet decomposition with ANN and ANFIS,
Reference [17] demonstrated that the hybrid WANN and WANFIS models were more suit-
able for predicting daily reservoir water levels. In addition, previous research [18] predicted
the water level variabilities in the Chahnimeh reservoirs in Zabol based on evaporation,
wind speed and daily average temperature factors using ANN, ANFIS and Cuckoo op-
timizations algorithms and the results indicated that the ANFIS was the best algorithm.
For short-term reservoir water level predictions in Yaojiang, China, Reference [19] also
compared ANN, SVM and ANFIS, with the results showing that all three models had
advantages in using all the predictor datasets, avoiding noisy information with lags of
inputs, and detecting the peaks under extreme conditions, respectively.
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Furthermore, Reference [20] predicted and estimated the daily reservoir levels for the
Millers Ferry dam on the Alabama river using ANFIS, SVM, radial Basis Neural Networks
(RBNN), and Generalized Regression Neural Networks (GRNN) methods in comparison
with the ARMA and Multilinear Regression (MLR) methods. The study concluded that,
for the best-input combinations, ANFIS produced better results. For the prediction of dam
inflows into the Soyang River dam in South Korea, Reference [21] showed that instead
of individual models, the combined ensemble forecasts using Random Forest (RF) and
Gradient Boost Trees (GT) with Multilayer Perceptron (MLP) could give greater results.
In predicting the water levels in the Upo wetland in South Korea, Reference [22] also
concluded that RF regression tree-based ML had the best prediction accuracy against ANN,
decision trees (DT), and SVM. In addition, Reference [23] showed that MLR and M5P not
only had higher accuracy than the k-NN and ANN but were also faster to train than the
Advanced Hydrologic Prediction System (AHPS).

Despite the accurate prediction results, which also varied according to the case studies
and different machine learning models, there are also limitations with some of the machine
learning based prediction algorithms. For example, ANN and ANFIS have shown the
disadvantage of presenting different results that depend on the system complexity and
the available data [19]. Some algorithms also tend to have low and unstable convergence
rates, and some tend to fall into the local optimum trap, and other algorithms require
high computational time [24]. In addition to these drawbacks, most implemented studies
did not apply baseline evaluation methods in forecasting competition evaluation. This is
particularly important in gauging the relative performance of the ML models to allow for
better contextualization of the results in relation to the complexity between the models [25].
Further, most of the previous investigations tended to input all the exogenous predictor
variables in the prediction without significance and impact evaluations on the performance
of the models, with the assumption that the inclusion of additional variables improves the
model prediction accuracy [26].

From previous studies, the following is a summary of the drawbacks in the prediction
of dam water levels: (1) only a few studies have focused on the optimization of machine
learning and stochastic models and their integration for the prediction of dam water levels;
(2) most of the related studies focused on dam water level forecasting, as influenced by flood
stages and different reservoirs rather than on the dam water capacity predictions, and (3) the
studies utilized few variables in dam water level forecasting, with the dependent variable
as dam water level, and only rainfall and dam water itself as the independent variables.

To determine a suitable model for predicting the water levels in Botswana’s Limpopo
River Basin from 2001 to 2019, this study evaluates the results of the case study of the
Gaborone dam and the Bokaa dam. To improve on the drawbacks in the previous studies,
the aims of the current study are: (1) to determine the optimal machine learning model
for the accurate prediction of monthly dam water levels by comparing the parametric
Multivariate Linear Regression (MLR) as the baseline model, stochastic Vector AutoRegres-
sive (VAR), ensemble Random Forest Regression (RFR) and Multilayer Perceptron (MLP)
Neural Network (MLP-ANN); (2) to evaluate the effectiveness of the algorithms in learning
and predicting the temporal trends in the dam water levels by comparing the performances
of the optimized models; (3) to determine the significance of climate factors (rainfall and
temperature, climate indices), southern oscillation index (SOI), Nifio 3.4, Aridity Index (Al),
Darwin Sea level pressure (DSLP), and land-use land-cover comprising of built-up, crop-
land, water, forest, shrubland, grassland and bare-land, in the prediction of the dam water
levels in the two dams, and; (4) to derive the optimal model approach(es) for predicting the
variability of dam water levels in the two dams. The main contribution of this work is on
the derivation of a hybrid model capable of combining stochastic and machine learning
models for the accurate prediction of dam water levels in the two dams by integrating the
LULC and the climate conditions within the dam catchments.
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2. Materials and Methods
2.1. Study Area

The study area is located within Botswana’s Limpopo River Basin (BLRB). The
larger Limpopo River Basin is a transboundary basin, covering an area of approximately
416,300 km?, and straddles four southern African countries: South Africa (45%), Botswana
(19%), Mozambique (21%), and Zimbabwe (15%). The basin is home to more than 18 million
people and Botswana has the highest percentage (61%) of its population living in the
basin. As shown in Figure 1, the semi-arid Botswana relies on the following small-to-
medium-sized dams, which are located within the BLRB: Gaborone (141.4 MCM); Letsi-
bogo (100 MCM); Shashe (85 MCM); Dikgatlhong (400 MCM); Bokaa (18.5 MCM); Lotsane
(42.35 MCM); Ntimbale (26.5 MCM), and Thune (90 MCM). The case study dams are the
Bokaa dam and the Gaborone dam, located in the southern part of the BLRB (Figure 1). The
two dams are located at a distance of approximately 40 km apart.
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Figure 1. Location map of the Limpopo River Basin (LRB), Botswana’s LRB, Bokaa and Gaborone
dams and the dam catchment areas. Reprinted with permission from ref. [27]. Copyright 2022 Society
of Photo-Optical Instrumentation Engineers.

With the general scarcity of freshwater in the arid and semi-arid regions, water man-
agement problems tend to worsen, especially during extreme hydrological events, such
as drought. For this reason, and to optimally manage the dam operations, continuous
and accurate reservoir management schemes—including predictions of the variabilities
of the dam water capacities and the determinations of the influences of a natural climatic
phenomenon and anthropogenic activities on the water resources—is essential. In most
regions, predicting and forecasting dam water capacities is still challenging for water
resource operators and managers. This is attributed to the fact that, despite reservoir
water levels being directly regulated by the inflows and outflow releases, there are several
uncertainties in the dam water level determinant variables, such as the temporal dynamics
of climatic factors, e.g., rainfall and temperature, and dam operations and management
regimes, which are complex to model.

2.2. Data
2.2.1. Land-Use and Land-Cover (LULC)

For the multitemporal LULC classification, Landsat series data from Landsat 4 (L4-MSS),
Landsat 5 (L5-TM), and Landsat 7 (L7-ETM+), acquired from 1986 to 2020, were used.
Using the FLAASH (Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes)
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atmospheric correction algorithm and the Landsat rescaling coefficients, the multitemporal
Landsat images were corrected to generate the surface reflectance imagery.

The LULC classification was carried out using Breiman’s random forest algorithm [28]
and was implemented within the Google Earth Engine, as detailed in [29]. To improve the
classification accuracy, the mean, variance, and contrast gray-level cooccurrence matrix
(GLCM) texture features were found to be most significant and were included in the
classification scheme. The LULC classification accuracy metrics results are presented
in Table 1, and the LULC area coverages are summarized in Table 2 for the Bokaa and
Gaborone dam catchments. From the results, the Bokaa dam catchment occupies an area of
approximately 3610 km? and the Gaborone catchment is approximately 4344 km?.

Table 1. LULC classification accuracy. OA is average overall classification accuracy; PA is average
producer accuracy and UA is the average user accuracy.

Bokaa Dam Gaborone Dam
Year PA (%) UA (%) OA (%) Kappa PA (%) UA (%) OA (%) Kappa
Index Index
1986 - - - - 82.4% 80.0% 88.9% 0.82
1989 - - - - 83.1% 88.1% 89.1% 0.84
1994 86.0% 86.2% 90.5% 0.857 75.8% 86.8% 83.4% 0.76
1999 87.5% 86.1% 85.5% 0.790 85.4% 86.6% 85.2% 0.78
2004 89.7% 87.8% 88.3% 0.837 86.7% 87.3% 89.6% 0.84
2009 90.1% 86.7% 89.3% 0.869 80.0% 84.3% 81.3% 0.75
2014 85.3% 88.2% 89.4% 0.858 87.8% 91.0% 85.2% 0.78
2019 91.3% 88.3% 88.0% 0.833 86.0% 83.6% 84.8% 0.80
Table 2. Spatial-temporal LULC in Bokaa and Gaborone catchments.
Bokaa Catchment (Year/Area (km?))

LULC Class 2001 2004 2009 2014 2019
Tree Cover 206.14 477 .58 609.53 776.80 507.08
Shrubland 2237.10 2066.95 2173.66 2175.63 2296.40
Grassland 492.00 487.99 453.44 236.40 248.72
Cropland 297.20 306.55 173.84 196.23 233.57

Water 1.76 7.15 8.93 4.04 5.23
Built-Up 70.30 76.42 96.53 99.59 108.79
Bare-soil 305.40 187.26 93.97 121.21 210.10

Gaborone Catchment (Year/Area (km?2))

LULC Class 2001 2004 2009 2014 2019
Tree Cover 752.46 870.96 1160.17 1202.26 1364.78
Shrubland 2782.85 2478.52 1805.56 2210.82 1778.31
Grassland 167.24 174.03 44511 62.23 323.70
Cropland 451.62 454.66 588.12 526.62 268.74

Water 15.07 12.65 18.49 7.66 17.88
Built-Up 70.28 98.31 155.77 167.44 172.95
Bare-soil 104.73 255.12 171.03 167.22 417.89

From the classification error matrix, the overall accuracy (OA) is determined from the
ratio of the correctly classified pixels to the total training sample. Further, the respective
class User’s Accuracy (UA) is determined by the ratio of the correct positive predictions,
while the Producer’s Accuracy (PA) is the ratio of the correctly detected positives. For each
year, the average OA, UA and PA are presented in Table 1. The results in Table 1 show that
for both dam catchments, the LULC classification accuracies, as measured using the PA,
UA and OA metrics, were higher than 80%, and the corresponding Kappa Index ranged
between 0.75 and 0.87. The accuracy measures demonstrate that the LULC was derived
with a high degree of accuracy for both dam catchments.
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In Table 2, it is observed that for both catchments, the built-up areas are increasing
exponentially, while the vegetation and bare soil-covered areas increased and decreased,
interchangeably, either due to activities in croplands or due to climate influences. Tree
cover within the catchments is also observed to be increasing in coverage, while shrubland
has decreased in extent over the years.

2.2.2. Climate Data

1.  Rainfall and Temperature

Monthly rainfall data from the Gaborone gauge station was also used for both the
Bokaa dam and Gaborone dam catchments due to their geographical proximity, climatic
similarities, and given that there is no gauge station within the Bokaa dam catchment.
Figure 2 shows the observed rainfall patterns within the Bokaa and Gaborone dam catch-
ments, and Figure 3 shows the minimum, average, and maximum temperature variabilities
within the catchments. Over the 19 years of study, it is observed that the mean temperature
is increasing while the amount of rainfall received in the two catchments is decreasing.

Variablility of rainfall and climate inidices in the Bokaa and Gaborone dam catchments
(2001-2019)
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Figure 2. Variability of rainfall and climate indices within Bokaa and Gaborone dam

catchments (2001-2019).

Temperature variabilility within the Bokaa and Gaborone dam catchments (2001-2019)
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Figure 3. Temperature variability within the Bokaa and Gaborone dam catchments (2001-2019).

2. Climate Indices

The climate indices considered were those that have teleconnections with particular
rainfall over southern Africa, that is, DSLP, SOI, and Nifio 3.4. The average March-June
pressures at Darwin have proven to have high positive sea level pressure (SLP) anomalies
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and teleconnections to droughts over southern Africa [30]. The SOI standardized sea-level
pressure difference between Papeete and Darwin is also related to rainfall over the sub-
region. In addition to the three climate indices, the aridity index (Al) was derived using
station rainfall and temperature data, as in Equation (1):
12P;
L — 1
! T; + 10 M)

where P; = the monthly total precipitation (mm) and T; = mean near-surface temperature (°C).

2.2.3. Dam Reservoir Water Levels

The mean monthly dam water levels were used as the indicators for water availability
in surface water storages, from 2001 to 2019, for the two dams. Figure 4a shows the variabil-
ity of the dam water levels with rainfall, with the Bokaa dam exhibiting a marginally higher
degree of correlation with rainfall than the Gaborone dam. The scatterplot regressions

in Figure 4b depicts very low correlations between the measured dam water levels and
rainfall in the two catchments.

Dam water levels and mean rainfall for Gaborone and Bokaa dams (2001-2019) Bokaa dam
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Figure 4. (a) Variability of dam water levels in Bokaa and Gaborone dams with mean monthly
precipitation. (b) Correlation between dam water levels and rainfall.

2.2.4. Data Statistics and Correlational Analysis

The summary of the mean monthly statistical descriptions of the study datasets, from
2001 to 2019, for the two dams is presented in Table 3.

In terms of the correlations presented in Figure 5, the Bokaa dam exhibits the highest
water levels, but inverse correlations with tree cover, at —0.349, followed by maximum
temperature, bare soil, grassland, average temperature and aridity index, respectively,
at —0.243, 0.216, 0.175, 0.161, and 0.161. The Bokaa dam water level correlations were
particularly worse with Nifio 3.4 and DSLP, at —0.035 and —0.047, respectively. In general,
the water levels in the Bokaa dam have positive but low correlations with LULC classes
and low negative correlations with the climate factors. Comparatively, the Gaborone dam
had higher correlations with the predictor variables (Figure 5). The highest correlations
for the Gaborone dam water levels with the predictor variables were for grassland, water
bodies, and shrubland, at 0.815, 0.761 and —0.730, respectively. The lowest correlations
were with built up, rainfall, and aridity index, at 0.013, 0.029 and 0.034, respectively.
The Gaborone dam displays positive and higher correlations with dam surface area and
grassland; however, lower and negative correlations with climate factors and indices.
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Table 3. Descriptive statistics for the datasets. (BC = Bokaa dam catchment; GC = Gaborone dam

catchment; SD = standard deviation; CV = coefficient of variation and SE = standard error).

Parameters Min Max Median Mean SD Ccv SE
Dam water B-dam 2.00 105.00 47.00 46.46 28.50 61.34 2.74
levels (WL) (%) G-dam 1.00 100.00 4450 43.86 31.65 72.17 3.05
Rainfall (RN) (mm) 0.00 174.10 17.70 35.15 43.82 124.68 424
Min Temp (TMX) (°C) 1.60 23.30 15.15 13.49 6.03 4473 0.58
Max Temp (TMM) (°C) 20.90 39.10 29.45 28.88 3.93 13.61 0.38
Avg Temp (TMA) (°C) 11.25 29.05 22.40 21.19 4.82 22.73 0.46
Al 10.00 96.15 19.21 27.36 21.71 79.35 2.09
DSLP 4.80 15.00 10.45 10.20 2.80 27.49 0.27
SOI —6.55 8.04 0.25 0.40 3.16 791.38 0.30
Nifio 3.4 (NINO) 25.00 29.42 27.18 27.17 0.99 3.64 0.10
BC 14.05% 21.52% 18.80% 18.41% 0.02 13.33 0.01

TreeCover (FR)
GC 27.10% 31.42% 28.40% 28.78% 0.02 5.41 0.01
BC 60.24% 63.61% 60.95% 61.38% 0.01 2.12 0.00

Shrubland (SR)
GC 40.93% 50.89% 46.81% 46.31% 0.03 6.80 0.01
BC 6.55% 10.13% 6.82% 7.47% 0.01 17.05 0.00

Grassland (GL)
GC 1.43% 7.45% 5.00% 4.56% 0.02 45.01 0.01
BC 5.07% 6.47% 5.65% 5.70% 0.00 8.65 0.00

Cropland (CL)
GC 6.19% 12.90% 11.00% 10.34% 0.02 23.93 0.01
BC 0.11% 0.19% 0.14% 0.14% 0.00 18.04 0.00

Water body (WT)
GC 0.18% 0.41% 0.27% 0.28% 0.00 26.34 0.00
0, 0, 0, 0,
Built-Up (BU) BC 2.71% 3.01% 2.81% 2.83% 0.00 3.88 0.00
GC 3.68% 3.98% 3.88% 3.86% 0.00 2.60 0.00
BC 2.90% 5.82% 3.85% 4.08% 0.01 26.03 0.00
Bare-soil (BL)

GC 3.85% 9.62% 5.00% 5.80% 0.02 38.22 0.01

2.3. Methods
2.3.1. Multivariate Linear Regression (MLR)

MLR was utilized as a baseline for competition evaluation [24]. Linear regression
models are simple models that have linear and non-linear parameters for predictions. For
small sample sizes, the parametric multilinear regression (MLR) models are able to establish
the relationships between the predictor variables and the dependent variable using least
squares fitting. In this study, the dam water levels depend on climate factors, climate
indicators, and LULC. The general MLR model is expressed as in Equation (2).

Yi = Bo + B1x1i + Poxoi + - -+ BaXgi + € ()

where: y; = observed dependent variable; n = sample size withi=1, ..., n; x1, x2, ...,

xg = explanatory predictor variables; x1;, X2;, ..., X;; = observed value descriptors; ¢; = residual
or error for individual i, Bp = constant; 1, B2, - - - B4 = multiple regression coefficients. In
Equation (2), dam water level (WL) is the dependent variable, Y, determined by a set of
predictor variables, as those in Figure 5 (RN, TMX, TMM, TMA, DSLP, Al, SOI, NINO, BUP,
CL, WT, FR, SL, GL, BL).
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Figure 5. Correlation matrix heatmap of the predictor variables and dam water levels for (a) Bokaa
dam and (b) Gaborone dam. The datasets are abbreviated as dam water level (WL), rainfall (RN),
max temperature (TMX), min temperature (TMM), average temperature (TMA), Darwin Sea Level
Pressure (DSLP), Aridity Index (AI), Southern Oscillation Index (SOI), Nifio 3.4 (NINO), Built-Up
(BUP), cropland (CL), water body (WT), tree-cover or forest (FR), shrubland (SL), grassland (GL) and
bare-land or soil (BL).

2.3.2. Vector AutoRegressive Model

VAR is a stochastic linear prediction model that predicts the current time variable value,
based on its previous time value, and takes into consideration other predictor variables.
Through dynamic analysis, VAR detects the changes to a particular variable, affects changes
to other variables, the lags of those variables and the changes in the variables’ lags. VAR
thus extends the univariate autoregression to the multiple time-series regression, with the
lagged values of all series as regressors. For example, the VAR model of two variables X;
and Y;(k = 2) with the lag order p is defined as in Equations (3) and (4). The g and -y can
be estimated using the ordinary least squares method.

Yi=PBro+BuYe1+- - +P1pYep t 11 Xe—1 - +r1pXe—p + ps 3)

Xt =Boo+PrYeo1+ - +HBopYi—p + v Xe1+ - FY2pXe—p + pn 4)

The lag-order for the VAR(p) model is determined using the lag-length selection crite-
ria, and the VAR(p) models are fitted with orders p =0, 1, ... pmax and the p-value, which
minimizes some model selection criteria, is chosen. The parameter lag selection criteria in
this study are the Akaike’s Information Criterion (AIC,), Schwarz Bayesian Information
Criterion (BIC,), Hannan-Quinn Criterion (HQCp), and Final Prediction Error (FPE,). The
traditional unrestricted VAR is unsuitable for non-stationary data with seasonality and,
therefore, this study imposed a priori differencing on the input datasets for stationarity.

The implemented VAR model for dam water level time series prediction was devel-
oped with the following steps:

1.  Testing for stationarity of the individual predictor variables using the augmented
Dickey-Fuller (ADF) test.

2. Determining the lag for the VAR(p) model using lag-length selection. VAR(p) models
are fitted with orders p =0, 1, ... pmax, and the p value resulting in minimal model
selection criteria is chosen based on the parameter selection criteria above. In this
study, the lag orders are determined for the specific predictor variables.
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3.  Establishment of an optimal VAR model with appropriate lags for each parameter.
For multivariate time series, the VAR model is constructed such that each variable, at
a time point, exhibits as a linear function of the recent lag of itself and other variables.
The generalized VAR(p) = VAR(1) form for the n = 15 predictor variables can be
expressed as in Equation (5). Equation (5) is solved using ordinary least squares, and
c represents the intercepts; A is the regression coefficient matrix, and e is the error in
prediction at time .

Y 1 A1 - Ais | [ Y el
=Lt N e ®)
Y15, C15 A1 - Asis] [Yise—1 e15,t

4. Residual autocorrelation assessment for goodness-of-fit. For the time series data, the
autocorrelation of the residuals between the observed and the model-fitted values is
used to determine the goodness-of-fit of the model. Accuracy assessment metrices,
including R2, RMSE, MAE and MAPE are used.

5. VAR system stability test assessment with the autoregressive (AR) roots graph. The
VAR stability determines how well the model represents the time series over the
sampling window. This is evaluated using the roots of the characteristic polynomial
of the coefficient matrix A in Equation (5). If the roots are less than 0, the VAR model
is considered stable.

2.3.3. Random Forest Regression

RFR is an ensemble learning regression model based on a decision tree algorithm [28].
The RER principle entails randomly generating different unpruned CART decision trees, in
which the decrease in Gini impurity is regarded as the splitting criterion. As a bootstrap
resampling and bagging approach, the bootstrap samples from the training set data are
fitted with an unpruned decision tree for each bootstrap sample. At the decision tree nodes,
variable selection is made on small random subsets of the predictor variables and the best
split from the predictors used to split the node. The trees in the forest are averaged or voted
to generate output probabilities and a final model that generates a robust model. In this
study the construction of the RER through the following steps:

1. From the original data, nTree bootstrap samples are drawn.

2. For each bootstrap dataset, a tree is grown, and for each tree-node mTry variables are
randomly selected for splitting.

3.  The aggregated information from the nTree trees is used for new data prediction, in
this case voting for regression.

4. Out-of-bag (OOB) error rate are computed using the test dataset not in the bootstrap sample.

RFR hyperparameters were tuned to determine the optimal lag-order, epochs, number
of trees (n_estimators) and max_depth for predicting the dam water levels.

2.3.4. Multilayer Perceptron (MLP) Neural Network

MLP-ANN is one of the most popular Neural Network models with input, hidden,
and output layers. The advantage of MLP-ANN is that even with a single hidden layer
and arbitrary bounded and smooth activation function, the network can approximate a
continuous non-linear system. The adopted network in this study was trained on the
Levenberg-Marquardt backpropagation with a gradient scheme for weighting adjustment
to minimize the predicted and observed data errors. The MLP-ANN model was imple-
mented following the structure and detailed steps in [31].

2.4. Performance Evaluation Metrics

Four statistical measures were used to evaluate the prediction efficiency of the models,
RMSE, R?, MAE, and MAPE. The metrices are respectively represented in Equations (6)—(9),
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where £ is the observed dam water level and  is the simulated or predicted dam water
level. RMSE, MAE, and h are measured in % of dam water level.

0.5
RMSE = [i (hf_nh?)z] (6)
i=1
(£2-7) 0 -)
R2 — 1=n —— (7)
zgn(h? hg) z';n(hs hs)
MAE—i‘ f;hf‘ (8)
i=1
MAPE = ii M x 100% ©)

2.5. Data Normalization

The input datasets were standardized within the range [0.1-0.9]. The [0.1-0.9] nor-
malization, using the minimum-maximum boundary, was used to standardize the original
data, as expressed in Equation (10). The standardization minimizes biases as all the input
data receive the same attention.

W — 1o,
f:h —01+08x (l’mn>

h?max - h?min (10)
where 19,y € R", Wmin = min(h?), h?max = max(h?) and k9 = input data. The datasets
were divided into 70% for training sets (April 2001-May 2014) and 30% for testing
(June 2014-December 2019).

The predictor parameters were organized into predefined significant inputs compris-
ing of: Set-1: Climate Indices, Rainfall and Temperatures; Set-2: Min-Avg-Max Tem-
peratures; Set-3: All Variables; Set-4: Rainfall; Set-5: Land-Use Land-Cover (LULC);
Set-6: LULC, Rainfall, Minimum and Maximum Temperatures, Climate Indices; Set-7: Rainfall,
Minimum-Maximum Temperatures and Set-8: Climate Indices.

To evaluate the relative importance of the predictor variables, backward sensitivity
analysis is adopted, where the significance of each input variable is determined by stepwise
variable replacement and the measure of the MAE deviation.

3. Results
3.1. Hyperparameter Tuning for the Models
3.1.1. Parameter Lag Order Determination for VAR Model

The optimal lag orders for the Gaborone and Bokaa dams were determined based on
the AIC, BIC, and HQIC measures. From the summary results in Table 4, rainfall (Set-4)
had the lowest AIC, BIC, and HQIC information criteria for the Gaborone dam, respectively
corresponding to —9.493, —5.990, and —8.070 (Table 4). Set-7, comprising rainfall and
temperature, was the second lowest, followed by Set-8, consisting of all the temperatures,
and the highest measure was detected from Set-3, comprising all the parameters. For
the Gaborone dam, temperature and rainfall had the highest lag orders, at 43 and 40,
respectively. From the results in Table 4 for the Bokaa dam, the rainfall factor (Set-4) gave
the lowest AIC, BIC, and HQIC, at —9.061, —7.732 and —8.523, respectively, and the highest
lag order of 20. This is followed by Set-7, combining rainfall and temperatures, with a lag
order of 12. For the Bokaa dam, the respective optimal lag orders varied between 7-20,
with temperature having the least lag order compared to the Gaborone dam. In Table 4, the
FPE values are not included since their magnitudes were all negligible.
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Table 4. Optimal VAR(p) lag order determinants for Gaborone dam and Bokaa dam.
Gaborone Dam Bokaa Dam
Lag 2 Lag 2
Dataset Order AIC BIC HQIC R Order AIC BIC HQIC R
Set-1 7 —45.9 -37.3 —42.5 0.761 7 —43.3 -35.1 —40.0 0.785
Set-2 43 —58.6 —43.8 -52.6 0.329 6 —57.6 —556.8 -56.9 0.203
Set-3 2 —142.6 —-133.1 —138.7 0.810 8 —157.6 —125.2 —144.5 0.872
Set-4 40 -9.5 -5.9 -8.1 0.224 20 -9.1 -7.7 —8.5 0.256
Set-5 8 —62.8 -53.2 —-58.9 0.952 7 —78.2 —69.9 —74.8 0917
Set-6 2 —100.8 -92.5 -97.5 0.936 6 —116.9 -91.9 —106.8 0.860
Set-7 7 -20.8 —18.7 -19.9 0.121 12 -19.6 —16.5 —18.3 0.798
Set-8 2 -25.9 —24.9 —25.6 0.884 7 —25.4 —221 —24.1 0.902
The VAR training results show that the contributions of rainfall and temperatures were
insignificant for both dams, with R? of less than 35%. The combination of the two climate
factors in Set-7 only improved the training results for the Bokaa dam water levels, but did
not influence the water levels in the Gaborone dam. Both dams responded well with LULC
and the four regional climate indices, with R? of between 76% and 95% (Table 4).
3.1.2. Training for RF Regression
To determine the optimal RFR tuning hyperparameters, the data sets were trained
with 70% of the data. The training results, based on lag order and max_depth, n_estimators,
are presented in Figure 6 for the Bokaa dam, and the corresponding results for the four best
predictors variables are presented in Table 5. For the Gaborone dam water level simulations
and predictions, the results for the RFR model tuning parameters are also presented in
Figure 6, with the best predictor variables statistics presented in Table 5.
Bokaa: R? vs. Lag Order Bokaa: R? vs. max_depth Bokaa: R? vs. n_estimators
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Figure 6. Hyperparameter tuning response for dam water level predictions using RFR model based
on lag order, max_depth and n_estimators for (a) Bokaa dam (top row), and (b) Gaborone dam
(bottom row). Reprinted with permission from ref. [27]. Copyright 2022 Society of Photo-Optical
Instrumentation Engineers.
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Table 5. Bokaa and Gaborone dam RFR optimal hyperparameters after tuning for best
predictor datasets.

Best Descriptor Data Sets Lag Order Max_Depth n_Estimators R?

Bokaa dam

Climate indices, Rainfall,

Set-1 Min-Avg-Max 12 11 52 0.840
Temperatures

Set-2 Min-Avg-Max 11 11 51 0.831
Temperatures

Set-3 All Variables 2 20 50 0.824

Set-7 Rainfall, Min-Max 13 20 50 0.820
Temperatures

Gaborone dam

Set-2 Min-Avg-Max 1 28 379 0.914
Temperatures

Set-4 Rainfall 1 28 379 0.817

Set-7 Rainfall, Min-Max 1 20 100 0.819
Temperatures

Set 8 Climate Indices 2 20 350 0.563

The RFR hyperparameter tuning results show that the water level prediction in the
Bokaa dam required significantly higher lag orders than the Gaborone dam but relatively
shallower depth and fewer n_estimators or number of RFR trees (Table 5). The RFR training
results for the best datasets depict R? > 0.82, with the exception of the Gaborone dam,
where the climate indices yield R? = 0.563.

3.1.3. Training of MLP-ANN Model

The training of the MLP-ANN for predicting the water levels in the two dams was
based on the lag order, the network number of hidden layers, epochs, and batch sizes. The
tuning results for the dams are illustrated in Figure 7 and the summary statistics for the
best four predictor variables are presented in Table 6.

For MLP training, low lag orders, between 1-4, are required to train the ANN, with
the hidden layers varying from 2—4 (Table 6). The Bokaa dam required higher epochs, with
relatively lower batch sizes, to train the model compared to the Gaborone dam, with the
exception of the data set comprising min-avg-max temperatures for the Gaborone dam. The
difference between the MLP and RFR hyperparameter tuning is that MLP-ANN detected
the direct impact of rainfall (Set-4) on the Bokaa dam water level variability, while RFR
only detected it indirectly, in combination with temperature (Set-7). For the Gaborone dam,
RFR detected the direct impact of climate indices (Set-8), however, this was only captured
indirectly for the Bokaa dam using RFR with Set-1. The RFR and MLP-ANN results
indicate that the temporal variability of the dam water levels within the two catchments is
influenced by the climate indices and climate factors. The impact of LULC is not directly
related to the water levels but may contribute to the determination of demand and dam
operation regimes. The best predictor variables in Table 6 show high training output with
R? > 0.83.

The observed variable responses in the hyperparametric tuning for water levels in
both dams, using RFR and MLP-ANN, respectively, shown in Figures 6 and 7, are attributed
to the systematic one-parameter-at-a-time tuning approach. For both models, the input of
the combination of the predetermined optimal hyperparameters in the determination of
the final hyperparameter automatically minimizes the model errors yielding the best fit
results, as observed in the final tuning response curves in Figures 6 and 7.
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Figure 7. Hyperparameter tuning for dam water level prediction using MLP-ANN model based on
lag order, number of hidden layers, and epochs for (a) Bokaa dam (top row), and (b) Gaborone dam
(bottom row).
Table 6. Bokaa and Gaborone dam optimal hyperparameters after tuning for MLP-ANN.
Best Descriptor Data Sets Lag Order Hidden_Layers Epochs Batch Size R?
Bokaa dam
Set-2 Min-Avg-Max Temperatures 2 3 700 5 0.865
Set-3 All Variables 1 4 400 13 0.825
Set-4 Rainfall 1 2 400 5 0.829
Set-7 Rainfall, Min-Max 1 5 300 5 0.850
Temperatures
Gaborone dam
Set-1 Cl}mate indices, Rainfall, 3 5 100 1 0.882
Min-Avg-Max Temperatures
Set-2 Min-Avg-Max Temperatures 1 2 600 13 0.914
Set-4 Rainfall 3 2 100 15 0.920
Set-7 Rainfall, Min-Max 4 2 100 13 0.921

Temperatures

3.2. Dam Water Level Prediction Results

This section presents the standardized dam water prediction results for comparison
between the two dams. The RMSE, MAE, and MAPE are calculated on the inverse of
Equation (9) of the standardized datasets.

3.2.1. Prediction of Dam Water Levels Using MLR

The results for the prediction of the dam water levels using MLR are presented in
Table 7, and shows that for both dams, Set-3, comprising of all variables, Set-5 (LULC), and
Set-6 (LULC, Rainfall, Min and Max Temperatures) were the best predictors. For the Bokaa
dam, the highest R? was 0.583, from Set-3 and Set-6, while the same sets yielded R? = 0.841
for the Gaborone dam, and LULC (Set-5) had R? of 0.785 for the Gaborone dam, compared
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to 0.489 for the Bokaa dam. The rest of the predictor variables predicted the time-series
variability of the dam water levels at less than 50% accuracy in terms of R?. Since the same
regression fitting equation was used for training and testing the time-series dam water
levels, the MLR results were found to be similar, with very low prediction accuracy. Using
the same fit for the entire 19-year data gave better results, as presented in Figure 8, and
demonstrated the fact that more robust model(s), at both training and testing phases, are
required in the prediction of dam water levels.

Table 7. Performance of the different datasets as water level predictors using MLR.

Predictor RMSE (%) R? MAE (%) MAPE (%)
Set B-Dam G-Dam B-Dam G-Dam B-Dam G-Dam B-Dam G-Dam
Set-1 26.2 62.4 0.151 0.181 22.5 61.9 75.8 73.2
Set-2 26.9 26.6 0.098 0.013 229 22.8 58.2 92.0
Set-3 18.3 15.8 0.583 0.841 14.6 12.7 62.3 50.8
Set-4 28.2 26.9 0.015 0.001 24.2 22.8 60.6 93.2
Set-5 20.3 16.6 0.489 0.785 16.5 13.5 66.3 39.1
Set-6 18.3 15.8 0.583 0.841 14.6 12.7 62.3 60.8
Set-7 26.8 26.4 0.110 0.021 22.8 22.6 78.0 91.5
Set-8 27.5 26.3 0.058 0.177 234 22.9 88.9 73.7
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Figure 8. Dam water level predictions for Bokaa dam (top) and Gaborone dam (bottom) using
multivariate linear regression. Reprinted with permission from ref. [27]. Copyright 2022 Society of
Photo-Optical Instrumentation Engineers.

Despite the good predictions using LULC for the Gaborone dam, which impacts on
Set-3 and Set-6, the graphical plots in Figure 8 and the large RMSE, MASE, and MAPE show
that the linear MLR is not suitable for simulating and predicting the complex, seasonal,
and non-linear trends exhibited by the water levels in both dams. As such, the MLR results
confirm the hypothesis that more robust regression models are necessary for predicting
water levels in the dams.
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3.2.2. VAR Prediction of Dam Water Levels
1. Bokaa Dam Water Level Prediction Using VAR

The dam water level predictions for the Bokaa dam were based on the predetermined
optimal training results for each dataset, shown in Table 4. The prediction results show
that only Sets-1, -3, -5, -6, and -8 presented the highest convergence for the Bokaa dam
(Table 8). Set-5, comprising the LULC classes, gave the highest R?, at 0.998. The second
highest (R? = 0.975) predictor variable is (Set-6), followed by Set-1 (R? = 0.959), Set-3
(R% = 0.928) and Set-8 (R? = 0.916). In terms of climate indices and climate factors, Set-1
(R? = 0.959; RMSE = 3.3%; MAE = 2.7%; MAPE = 14.3%) and Set-8 (R? = 0.995; RMSE = 2.7%;
MAE = 2.2%; MAPE = 36.9%) gave the best results. Without the climate indices, the long-
term predictions of dam water levels using temperatures (Set-2), rainfall (Set-4), and their
combination shows low prediction results. The rainfall and temperature sets registered the
highest MAPE errors, of more than 50%. The good performance of the LULC is attributed
to the interpolation within the five years, which results in minimal variability within the
input data and, therefore, low data variability and high accuracy.

Table 8. Accuracy statistics for water level predictions using VAR model for dam Bokaa and
Gaborone dam.

Predictor RMSE (%) R? MAE (%) MAPE (%)

Set B-Dam G-Dam B-Dam G-Dam B-Dam G-Dam B-Dam G-Dam
Set-1 3.5 2.7 0.959 0.995 2.7 2.2 14.3 36.9
Set-2 27.9 52.9 0.157 0.181 23.1 49.9 874 88.3
Set-3 49 0.2 0.928 0.998 3.4 0.1 21.9 15
Set-4 437 86.7 0.167 0.116 349 73.7 41.0 459
Set-5 0.7 0.6 0.998 0.999 0.2 0.2 1.5 3.3
Set-6 44 0.2 0.975 0.876 3.0 0.1 28.9 15
Set-7 42.8 1.3 0.291 0.858 32.1 0.9 40.6 154
Set-8 3.4 0.7 0.916 0.929 2.8 0.6 16.2 8.0

The best results for the water level predictions in the Bokaa dam are presented in
Figure 9. The prediction results and the graphical fits show that, despite having the highest
performance accuracy, the predictor factors combined LULC (Set-3 and Set-6) are not the
best predictor variables. This is particularly due to the inability of the model to capture the
dam water levels at the beginning of the prediction using the LULC as the predictor factor.
These differences are captured within the dotted boxes in Figure 9, depicting a lack of
expected trends and patterns. From the graphical and statistical analysis, the best predictor
variables for the Bokaa dam water levels are Set-1 and Set-8, where Set-1 was influenced by
both climate factors and climate indices.

2. Gaborone Dam Water Level Prediction Using VAR

Using the VAR model, the prediction of the Gaborone dam water levels is detected
to be significant using the four climate indices (Set-8), as shown in Table 8 and Figure 10
(R% = 0.929; RMSE = 0.7%; MAE = 0.6%; MAPE = 8%). The rainfall and temperature climate
factors performed marginally in predicting the Gaborone dam water levels, with R? of less
than 0.3 and MAPE above 20%, while their combination in Set-7 yielded higher accuracy
prediction accuracy results. Similarly, high prediction results were obtained using the
integration of the climate indices with rainfall and temperature in Set-1. The results for
the climate-based predictors are presented in Figure 10 for the Gaborone dam, with Set-3
including all parameters. By visually assessing the trends of the predictions within the
dotted boxes in Figure 10, it is empirically observed that climate indices gave the best
results. However, the results show that in the absence of climate factors, LULC can be
used to predict the water levels in the dams with good accuracy (R? > 0.990; RMSE < 0.7%;
MAE < 0.3%; MAPE < 3.5%).
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Figure 9. Water level prediction for Bokaa dam using VAR model. Reprinted with permission from
ref. [27]. Copyright 2022 Society of Photo-Optical Instrumentation Engineers.
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Figure 10. Water level predictions for Gaborone dam using VAR model. Reprinted with permission
from ref. [27]. Copyright 2022 Society of Photo-Optical Instrumentation Engineers.
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3.2.3. RFR Simulation and Prediction
1. RFR Prediction of Bokaa Dam Water Levels

The RFR prediction results for the Bokaa dam show that all the datasets are suitable
for predicting the water levels, with R > 0.8. LULC and RFR presented the least prediction
accuracy with R? = 0.807 and the best four predictors were Set-2 of all the temperatures,
followed by Set-3, Set-7, and Set-1, with R2 0f 0.836, 0.829, 0.824, and 0.820, respectively. The
corresponding RMSE varied between 11.3-12.5%, with an MAE average of approximately
7% and MAPE of approximately 13%. Figure 11 presents the predictions for the four best
predictor variable sets. The results from Set-2 and Set-7 comprise temperatures and rainfall
and depict that RER captured the relationship between the dam water levels and the climate
factors (rainfall and temperature). The analysis of the prediction trends confirms Set-2 and
Set-7 as the most suitable for predicting the dam water levels, as illustrated within the
dotted boxes, where the predictor variables are able to capture the temporal trends of the
measured dam water levels.
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Figure 11. Observed and RFR predicted water levels for Bokaa dam. Reprinted with permission from
ref. [27]. Copyright 2022 Society of Photo-Optical Instrumentation Engineers.

2.  RFR Prediction of Gaborone Dam Water Levels

Using the optimal RER hyperparameters for predicting the water levels in the Gaborone
dam, Table 9 shows Sets-2, -4, -7, and -8 presenting the best results, with R? values of 0.918,
0.819, 0.898, 0.897 and 0.890, respectively. The datasets comprise temperature, rainfall,
their combination, and the climate indices, respectively. The RMSE is observed to be lower
for the Gaborone dam than the Bokaa dam, ranging between 9.7% and 11.4%, while the
MAE averages were at 6.5% of dam water levels and MAPE is higher, at between 23% and
38%. The LULC-based prediction results show that, despite the positive correlation of more
than 65%, with the dam water levels, LULC does not capture the temporal seasonality and
variability of the dam water levels (Figure 12). The results in Table 9 and Figure 12 depict
that RFR is able to predict the water levels in the Gaborone dam using the climate factors,
with the temperatures (Set-2) being the best climate factor, followed by rainfall (Set-4). The
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combination of temperature and rainfall marginally reduces the influence of the predictive
ability of temperatures by nearly 10%, to R? of 0.898. The climate indices (Set-8) display a
significant impact on the water levels in the Gaborone dam, with R? = 0.890. The dotted
box regions in Figure 12 show the inability of RFR to accurately predict the temporal trends
in the Gaborone dam water levels.

Table 9. Accuracy statistics for water level predictions using the RFR model for Bokaa and
Gaborone dams.

Predictor RMSE (%) R? MAE (%) MAPE (%)
Set B-Dam G-Dam B-Dam G-Dam B-Dam G-Dam B-Dam G-Dam
Set-1 12.2 10.6 0.820 0.884 7.8 65. 18.3 25.0
Set-2 11.3 9.8 0.836 0.918 7.1 5.6 14.5 23.7
Set-3 11.9 10.1 0.829 0.816 7.1 6.8 12.1 30.7
Set-4 12.5 10.9 0.811 0.898 7.9 6.1 129 24.8
Set-5 12.5 11.3 0.807 0.653 8.0 7.1 12.8 37.5
Set-6 12.3 10.9 0.815 0.782 7.9 6.9 17.6 30.3
Set-7 12.3 10.9 0.824 0.897 7.2 6.1 13.3 25.2
Set-8 12.6 11.3 0.808 0.890 8.0 6.4 18.3 23.6
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Figure 12. Observed and RFR predicted water levels for Gaborone dam. Reprinted with permission
from ref. [27]. Copyright 2022 Society of Photo-Optical Instrumentation Engineers.

3.2.4. MLP-ANN Simulation and Prediction
1. Bokaa Dam Water Level Prediction Using MLP-ANN

With the rectifier linear unit activation function, Adam optimizer, and a learning rate
of 0.0003, the results for predicting water levels in the Bokaa dam are presented in Table 10.
The local temperature is linked to the dam water levels with the highest R? of 0.865, and
the lowest RMSE = 10.9% and MAE = 6.5%. The combination of temperature and rainfall
(Set-7) is second, with R? of 0.850, followed by rainfall (R? = 0.829). Climate indices (Set-8)
also influenced the dam water levels with R? of 0.805 and the least MAPE = 13.2%. LULC
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had the least influence on the dam water levels, with MAPE of 27.7%, and its combination
with the other parameters in Set-6 further reduced the accuracy, with MAPE = 56.6% and
R? = 0.449.

Table 10. Performance accuracy for water level predictions using MLP-ANN for Bokaa and
Gaborone dams.

Predictor RMSE (%) R? MAE (%) MAPE (%)

Set B-Dam G-Dam B-Dam G-Dam B-Dam G-Dam B-Dam G-Dam
Set-1 14.6 9.8 0.717 0.917 10.7 5.6 17.1 242
Set-2 10.9 9.3 0.865 0.925 6.5 49 24.6 30.8
Set-3 15.2 454 0.704 —7.801 10.7 40.9 23.4 57.7
Set-4 11.6 9.3 0.829 0.926 6.7 45 25.3 241
Set-5 15.8 42.6 0.627 —5.790 11.7 38.7 27.7 76.9
Set-6 17.3 28.7 0.449 —2.049 13.5 24.9 56.6 389
Set-7 11.3 9.8 0.850 0.920 6.8 47 17.7 247
Set-8 12.1 18.2 0.805 0.407 8.4 13.7 13.2 38.0

The performances for the best predictor variables within the box window time regions
in Figure 13 show that local temperature (Set-2) and rainfall (Set-4) exhibit similar and best
prediction trends with MAEs of approximately 6.5% and MAPE of 25%.
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Figure 13. MLP-ANN prediction of dam water levels for Bokaa dam.

2. Gaborone Dam Water Level Prediction Using MLP-ANN

For the Gaborone dam, all the predictor datasets with LULC (Sets-3-5-6) did not
converge to predict the dam water levels (Table 10). This further confirms the observations
in MLR and RFR, where LULC recorded low correlations with dam water levels. The best
performing sets in predicting dam water levels for the Gaborone dam were Set-4, rainfall
(0.926), performing equally with Set-2 (0.925), then Set-7 (0.920), and Set-1 (0.917). The
results show a positive response of the dam water levels to rainfall, temperature, and to
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the climate indices with an average low RMSE of less than 10%, R? > 0.91, and the least
MAE, >5% on average. The dotted boxes in Figure 14 show the differences in the dam
water predictions for the Gaborone dam. In comparison to Set-7, Sets-1, -2, and -4 present
good initial estimations of the dam water level. The MLP-ANN results improved the ability
of RFR to detect near-linear trends, with Set-2 (temperature) presenting the best empirical
and statistical predictions (Figure 14).
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Figure 14. MLP-ANN prediction of dam water levels for Gaborone dam.

3.3. Relative Importance of the Predictor Variables

For the Bokaa dam, Figure 15 presents the relative importance of each variable in the
predictor groups and compares all the factors. Comparing the variables, the tree-cover
and shrubland exhibited the highest correlation with dam water levels (slightly more than
50% influence), followed by the max temperature and Nifio 3.4. The least contributions
are from bare soil, built-up and grassland, with the significance of rainfall and aridity
index being negligible. The significance of the predictor variables indicates that within
the Bokaa catchment, the degree of vegetation index and the regional temperature have
higher correlations with the Bokaa dam water capacity. For the Gaborone dam (Figure 15),
grassland and water bodies exhibit the highest significance, followed by cropland and bare
soil, with the rest of the parameters contributing less than 2% each. The aridity index and
rainfall are observed to have the least contributions toward predicting the Gaborone dam
water levels. While grassland has negligible contributions to dam water levels in the Bokaa
dam, it has the highest significance for water capacity in the Gaborone dam, accounting for
nearly 48% significance. Similar to the Bokaa dam, the significance of vegetation health is
observed to have higher correlations with the dam water levels in the Gaborone dam.
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Figure 15. Relative importance of the predictor variables for Bokaa dam and Gaborone water levels.

Reprinted with permission from ref. [27]. Copyright 2022 Society of Photo-Optical Instrumentation
Engineers.

Investigating the predictor data groups for the Bokaa dam, in terms of the catchment
LULC, tree-cover has the most influence in predicting the dam water levels, accounting
for more than 50%; built-up, bare-soil, and grassland have the least contribution, with the
significance of each at less than 1%. The climate factors and maximum temperature have
the highest contributions, at 34%, and rainfall at 22% for the Bokaa catchment. Among
the climate indicators, Nifio 3.4 has the highest contribution in predicting the dam water
levels in the Bokaa dam, at 28%. For the Gaborone dam, the existence of water bodies and
grassland is most important for predicting the dam water levels in the Gaborone dam, with
up to 32%. The climate factors exhibit competing significance, ranging between 21-25%,
with minimum temperature and rainfall as the most significant climate factors. For the
climate indices, Nifio 3.4 has the highest significance, at 42%, with Al and DSLP being the
least, with a nearly equal relative importance of 17%.

The relative importance measures, shown in Figure 16, depict the sensitives of the
predictor variables. The results show that for both dams, LULC forms part of the most
significant predictor variables; therefore, the more accurate catchment LULC, in terms of
high temporal resolution and actual classification accuracy, is important in predicting dam
water levels for both dams. The parametric sensitivities in Figures 15 and 16 also imply
that the prediction model should be able to capture the influences of both the high and low
significant variables.
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Figure 16. Relative significance of predictor variables within LULC, climate factors and climate
indices for Bokaa dam and Gaborone water levels.

4. Discussions

The present study compares the performance of the stochastic VAR and the machine
learning RFR and MLP-ANN models. The performances of each prediction horizon are
compared using the average MAE, RMSE, and MAPE estimates and the R? statistics as
a goodness-of-fit of the models. The metrics are considered to adequately measure the
prediction accuracy and depict how well the model generalizes the unseen or test data.
To determine the best predictor variables and to gauge the sensitivity of the models to
the inputs, different exogenous input combinations were explored, and the results were
compared using the above statistical indicators.

4.1. Influence of the Predictor Variables on Dam Water Level Predictions
4.1.1. Impact of LULC on Water Level Predictions

The current study reveals the significance of LULC in predicting dam water levels
as detected by the tested models. The assumption in the five-year time epoch used in the
LULC temporal resolution is that there are insignificant changes in the natural land-covers
such as water bodies, grasslands, shrublands, forests, bare soils, and land-use such as
croplands. However, significant changes are expected in urban built-up, although at a slow
spatial and temporal rate. Only the stochastic VAR detected the correlation and variability
between the dam water levels and LULC, and predicted the dam water levels with LULC
as the best predictor variable, with the highest accuracy of greater than 99%. The prediction
results using MLR, RFR, and MLP-ANN showed that the LULC pattern, as interpolated
over the 20-year period, may not be suitable for predicting the dam water levels for both
dams as it exhibited high RMSE, MAE, and MAPE errors. For the Gaborone dam, the use of
LULC resulted in a lack of convergence in prediction using the MLP-ANN. To improve the
significance of LULC in dam water predictions, it is recommended to increase the temporal
resolution of the LULC to annually.
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4.1.2. Influence of Climate Factors and Climate Indices

In predicting Bokaa dam water levels using the VAR model, the combination of climate
indices, rainfall, and temperature gave the best results (R? = 0.959, MAPE = 14.3%). This is
attributed to the high correlation with the climate indices (R? = 0.916, MAPE = 16.2%), which
resulted in good performance of all the parameters combined. Rainfall and temperature,
however, did not give good results. RFR detected a higher relationship of the dam water
levels using temperature (R? = 0.836, MAPE = 14.5%), the combination of temperature and
rainfall (R? = 0.824, MAPE = 13.3%), the climate indices (R? = 0.808, MAPE = 18.3%), and
the combination of climate indices, rainfall, and temperature (R? = 0.820, MAPE = 18.3%).
The MLP-ANN results for the Bokaa dam water levels show temperature (R2 = 0.865,
MAPE = 24.6%), rainfall (R? = 0.829, MAPE = 25.3%), the combination of rainfall and
temperature (R% = 0.850, MAPE = 17.7%), and climate indices (R? = 0.805, MAPE = 13.2%)
are directly related to the Bokaa dam water levels.

For the Gaborone dam, VAR predicted the dam water levels using the combined influ-
ences from rainfall and temperature combined (R? = 0.858, MAPE = 15.4%), climate indices
(R? = 0.929, MAPE = 8.0%), and climate indices, rainfall and temperatures (R2 =0.995,
MAPE = 36.9%). Using RFR, the dam water level trends were best predicted using the local
temperature observations (R? = 0.918, MAPE = 23.7%), rainfall (R? = 0.898, MAPE = 24.8%),
integrated temperatures and rainfall (R? = 0.897, MAPE = 25.2%), and climate indices
(R2 =0.890, MAPE = 23.6%). Using MLP-ANN, similar results as RFR were observed,
with local temperatures (R? = 0.925, MAPE = 30.8%), rainfall (R? = 0.926, MAPE = 24.1%),
integrated temperatures and rainfall (R? = 0.920, MAPE = 24.7%), and climate indices,
rainfall and temperatures (R? = 0.917, MAPE = 24.2%).

While the VAR predictor variables are different for the two dams, with the exception of
a combination of climate indices, rainfall and temperature, the predictor parameters for the
Gaborone dam are observed to be similar to those of the Bokaa dam. It is observed that the
predictions using RFR and MLP-ANN detected the variability of both dam water levels to be
influenced by the same factors. For both dams using RFR and MLP-ANN, the results show
that the climate factors and climate indices are the best predictors for dam water levels and
are best modelled using MLP-ANN, which had the highest prediction accuracy, compared
to RFR. The results further show that in the absence of reliable rainfall and temperature
data, the water levels in both dams can reliably be predicted using the machine learning
models based on the regional climate indices (DSLP, AI, SOI and Nifio 3.4).

From the analysis of the significance of the predictor variables in Figure 15, the
relatively lower contribution of rainfall in the prediction of dam water levels shows that
precipitation and resulting runoff within the catchment may not be only the main sources
of dam water but also marginal contributions from conjunctive water sources, such as
wellfields and from other dams. As such, improvements in the prediction of the dam water
levels should include the determination of the influences of the network of inter-reservoir
water transfers.

4.1.3. Model Performances

In general, MLR was not able to detect and predict the variability of the dam water
levels. On the other hand, the lower performance of VAR in detecting the influence of
the seasonal climate factors and climate indices in detecting the variability of the dam
water levels is attributed to the low convergence rate, as the convergence tends to be
unstable, and the predictions easily fall into the local optimum trap, with an increase in the
computational time, especially for the non-stationary variables [32]. On the other hand, the
main advantage of the RFR machine learning, resulting in generally good results with all
the variables, is in the ability to detect and discard the outlier dam water levels with ease
due to the improved grouping of water level data contained in the set of terminal nodes
in the decision tree. The results from MLR, VAR and RFR imply that the fluctuations in
the water level in the dams are difficult to capture using the stochastic linear models [33].
The advantage of RFR and why it was able to give relatively good results is that it can
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handle non-linear and non-Gaussian data well and with minimal over-fitting problems as
the number of trees increases [34].

MLP-ANN results support the suggestion that data-driven techniques tend to over-
come the drawbacks of traditional models in terms of accuracy and the ability to model
complex phenomena [35]. MLP-ANN was able to capture the influence of climate factors
and climate indices with higher accuracy, though it had non-converging prediction using
LULC. For the two dams, it is possible to infer that the MLP-ANN predictions adapted
to the changing climate conditions. The advantages of the ANNSs over other methods in
predicting dam levels can be attributed to the fact that the ANN structure can detect and
include the non-linear components of the system in the whole data set. Comparatively,
in predicting reservoir water levels for the Angat dam in the Philippines, [25] tested the
Naive-persistence and Seasonal Mean methods as baselines against ARIMA, gradient boost-
ing machines (GBM), and Deep Neural Networks based on LSTM, univariate (DNN-U)
and multivariate models (DNN-M). The results showed that the prediction of the dam
water levels was better performed using the data driven Deep Neural Network and not the
traditional linear models.

4.2. VAR-ANN Hybrid Dam Water Prediction Model

The results show that neither the stochastic VAR, the decision tree based RFR, nor the
MLP-ANN can independently detect the compounded impacts of LULC, climate factors,
and climate indices in predicting the dam water levels. In particular, the stochastic VAR is
observed to be more capable of predicting the dam water levels using LULC, which exhibits
a linear trend from the five-year interval interpolations, while MLP-ANN performed better
than RFR and VAR in predicting the dam water levels using the seasonal and non-linear
climate factors and indices.

Since time-series hydrological data comprises different frequency components char-
acterized by non-linear interactions, hybrid models have been proposed to improve the
performance in hydrological prediction [36]. These approaches include Neural Networks
based on Set Pair Analysis (SPA) and Principal Component Analysis (PCA) [37,38], Chaotic
Neural Networks [39], Cluster Hybrid Neural Networks [40], And Bootstrapped Artificial
Neural Networks [41,42].

From the prediction results, a hybrid dam water level prediction model comprising
VAR-ANN is proposed as optimal in modeling the linear and non-linear components of the
dam water levels. The VAR-ANN time-series representation of the dam water levels WL; is
proposed to comprise the linear L; and non-linear N; predictor variables (Equation (11)).

WL = (Lt + Ny) (11)

e = (WLt _ ft> (12)

Ni = f(er,ea,...,e—p,et) (13)
WL; = (ft n ﬁt> (14)

In the implementation, VAR is fitted to the linear components and the outcome linear-

based predictions L; at time ¢ are derived. The residuals from the VAR, termed as ¢; at
time t are determined as in Equation (12). The ¢; dataset after VAR fitting is considered
to contain the non-linear N; time-series components of the dam water WL; levels and can
be modelled using the ANN. With p input nodes, the ANN for residuals has the form
in Equation (13), with f as the non-linear function estimated by the ANN and ¢; is the

white noise. If N; is the ANN prediction, then the hybrid prediction of at time ¢ is defined
according to Equation (14). The hybrid VAR-ANN model is implemented as depicted in
Figure 17.
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Figure 17. VAR-ANN hybrid model for dam water level prediction.

From the best predictor variables for both dams, the average results of the hybrid
VAR-ANN model for the two dams, presented in Figure 18, show an overall improvement
in the prediction accuracy of the dam water levels. The results show that the hybrid model
integrates the linear and non-linear variabilities in the predictor datasets to accurately
predict the dam water levels. The VAR-ANN produces positive predictions using rainfall,
temperature, climate indices, and LULC, with an average R? > 0.84 and MAPE < 10%. The
results show that the average prediction RMSE, MAE, and MAPE error measures for both
dams are also significantly reduced. The results imply that the hybrid model is able to
capture the parametric sensitivities of both the high and low significant variables that are
depicted in Figures 15 and 16.

4.3. Average Model Errors and ROC Area under Curve (AUC)

The average model prediction error E (%) in Equation (15) is determined as the average
for both dams using the best predictor parameters with the highest R? and the least RMSE,
MAE, and MAPE error measures. In Figure 19, for the average predicted dam water level
errors for the four models, the combination of the VAR and ANN diminishes the magnitude
of the prediction error between the predicted and observed dam water levels for the two
dams, producing the least errors for the predicted time-series dam water levels, and thus
improved consistency in predicting the water levels.

(WLpredicted - WLobserved)

E =
WLobserved

x 100% (15)

In the first months, the E (%) for VAR-ANN is observed to be between —5% and +8%
of dam water levels and diminishes to nearly 0.01% for more than 70% of the predicted dam
water levels. Even though MLP-ANN performs better than RFR and VAR, its prediction
errors exhibit low convergence with sinusoidal patterns in time, and this could be attributed
to the influence of LULC. RFR and VAR present higher degrees of error at about 5-10%,
with VAR exhibiting random spikes in error with time.

To further infer the significance of the models, the area under the receiver operating
characteristic curve scores were computed for the two dams, with the results in Figure 19.
The AUC scores are also based on the average true positive (sensitivity) and false positive
rates (specificity) measures from the average of the best predictor variables for the dams.
The results in Figure 20 show that for the Bokaa dam and Gaborone dam, VAR-ANN had
the highest AUC scores, 0.89 and 0.93, performing better than MLP-ANN and RFR. The
AUC scores for RFR were nearly equal, at 0.77 and 0.78, respectively, for the Bokaa dam and
Gaborone dam, while VAR performance was at AUC < 0.7 for both dams. Despite the good
performance from VAR-ANN, the MAPE measures for the Gaborone dam were observed
to be higher than those of the Bokaa dam. The average AUC shows that the VAR-ANN has
a higher ability to predict the dam water levels from all the predictor variables.
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5. Conclusions

Under the influence of climate change and the intensification of land-use activities,
understanding dam water capacity variations is important for planning dam water supply
regimes and management. In the present study, dam water level observations in the
Bokaa dam and Gaborone dam, in the semi-arid Botswana, were simulated and predicted
using linear multilinear regression (MLR) and stochastic Vector AutoRegression (VAR)
models, along with Random Forest Regression (RFR) and Multilayer Perceptron Neural
Network (MLP-ANN) techniques. Using LULC, climate factors (rainfall and temperature)
and climate indices (DSLP, Aridity Index (AI), SOI and Nifio 3.4) as the dam water predictor
variables, the results show that the stochastic VAR was able to detect the variation of LULC
with dam water levels better than MLR, RFR and MLP-ANN, while RFR and MLP-ANN
captured the relationships with the climate conditions with MLP-ANN, performing better
than RFR. The stochastic VAR was not able to correlate rainfall and temperature with
the dam water levels, except when integrated with the four climate indices. RFR and
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MLP-ANN gave the highest dam water level prediction results using rainfall, temperature,
and the climate indices. MLP-ANN gave the best prediction results for the dam water level
fluctuations for both dams, with the Gaborone dam predictions being more accurate than
those for the Bokaa dam in terms of R?, but slightly lower when determined using MAPE.
The higher MAPE for the Gaborone dam confirmed that the dam does not entirely rely
on precipitation, but also on conjunctive water sources, including periodic direct supply
from the Bokaa dam and wellfields. The proposed VAR-ANN hybrid model improved the
prediction accuracy of the dam water levels for both dams by integrating the linear and non-
linear variabilities in the predictor datasets and the dam water levels. To improve on the
current study, the temporal intervals for the LULC should be increased to annual in order
to accurately capture the seasonal variabilities in the LULC; secondly, the contributions of
water sources from wellfields and other dams should be incorporated into the prediction
modeling. For the low convergence in the simulation and prediction of the dam water
levels, using faster and hybrid tree-based machine learning algorithms is recommended for
further investigations.
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