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• Modelling approaches delineate African
terrestrial C hotspots.

• Scale-dependent SOC-plant C interplay
• The tropics host most of the terrestrial C
in Africa.

• Terrestrial C hotspots are required for
decision-making.
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A B S T R A C T

Terrestrial plant and soil organic carbon stocks are critical for regulating climate change, enhancing soil fertility,
and supporting biodiversity. While a global-scale decoupling between plant and soil organic carbon has been
documented, the hotspots and interconnections between these two carbon compartments across Africa, the
second-largest continent on the planet, have been significantly overlooked. Here, we have compiled over 10,000
existing soil organic carbon observations to generate a high-resolution map, illustrating the distribution pattern
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of soil organic carbon in Africa. We then showed that above- and below-ground plant carbon are significantly and
positively correlated with soil organic carbon across Africa. Both soil and plant carbon compartments shared
major hotspots in the tropical regions. Our study provides critical insights into the spatial distribution of carbon
hotspots across Africa, essential for soil conservation and safeguarding terrestrial carbon stocks amidst the
challenges of climate change.

1. Introduction

Terrestrial plant carbon (C) and soil organic carbon (SOC) stocks are
essential for enhancing soil fertility, regulating climate, and supporting
biodiversity worldwide. While soils store two to three times more C than
is found in plants, both plant and soil C compartments are, in theory,
highly interconnected (Luo et al., 2019). Thus, plant litter inputs could
potentially contribute to C stored in some soils (Grace et al., 2006). In
turn, organic matter (OM) stored within soils is critical for supporting
nutrient cycling, providing available nutrients for plant uptake and
growth. However, the current literature suggests a global-scale decou-
pling of plant and soil C stocks, with the tropics exhibiting the highest
plant C pools while boreal regions support the largest soil C reserves
(Blais et al., 2005). Therefore, both understanding the interconnections
between plant and soil C and precisely pinpointing C storage hotspots is
crucial for developing effective strategies to enhance terrestrial C stor-
age and conservation, thereby promoting ecosystem sustainability and
mitigating climate change (Berhongaray et al., 2019; Luo et al., 2019;
Rasse et al., 2005; Wang et al., 2022).

Many studies examine the contribution and influence of plant
biomass C on soil organic carbon (SOC) through small-scale field ex-
periments (Berhongaray et al., 2019; Dietzel et al., 2017; Kätterer et al.,
2011) or studies related to land use types (Geng et al., 2017). Examples
in Africa, such as those by Bukombe et al. (2022), show that the allo-
cation of soil and plant C along a toposequence in Central Africa is
largely driven by geochemical properties rather than topography. Zhou
et al. (2023) demonstrates that C derived from grasses contributes more
than half of the SOC in tropical savannas. At smaller spatial scales (e.g.,
ecosystem-scale), soil processes and properties can be better understood
because of the fine details expected at this level (Eusterhues et al., 2003;
Martens et al., 2023; Zech et al., 2022). However, studies investigating C
hotspots and interlink between plant and soil C for vast spatial scales are
largely lacking. In Africa, most large-scale studies only map the spatial
distribution and variability of SOC (Hengl et al., 2021; Vågen et al.,
2016), monitor the temporal dynamics and persistence of SOC in
selected sub-Saharan regions (von Fromm et al., 2024), or attempt to
understand the controls of SOC in the sub-Saharan region with fairly
limited samples (von Fromm et al., 2021). Even so, the patterns of
above- and below-ground plant biomass C, in conjunction with SOC, are
critical to understand especially across Africa; however, such under-
standing is severely lacking when only relying on experimental research
that targets a few sites.

Plants can significantly impact soil C through processes via litter
inputs and root rhizodeposition; additionally, the formation and
persistence of SOC are also shaped by additional factors, including
climate and soil texture (Wiesmeier et al., 2019). In another instance, we
know that soil microbes tend to decompose organic materials (e.g., plant
litter) at different rates. However, when temperature increases,
decomposition rates increase concurrently due to high microbial activ-
ity. Temperature rise has been shown to promote rapid heterotrophic
soil respiration (Bond-Lamberty et al., 2018), resulting in a decrease in
SOC stocks (Mayer et al., 2017). Meanwhile, nutrients, including
phosphorus and nitrogen, are also crucial components of the soil ex-
pected to improve plant productivity, which in turn, should increase
SOC stocks (Spohn et al., 2023) via litter input. Long-term experiments
provide evidence for this outcome (Baethgen et al., 2021; Merbach and
Schulz, 2013) although not for large spatial scales. All these environ-
mental factors and processes play an integral role in the soil-plant C

interactions. Aside from a scarcity of large-scale investigations on soil-
plant C linkages, it remains uncertain whether regions with elevated
plant biomass C always correspond to high soil C levels, especially across
varying environmental conditions, such as Africa. Also, previous SOC
mapping efforts in Africa have either limited their efforts by applying
only remote sensing data (e.g., MODIS; Vågen et al., 2016) or did not
account for spatial autocorrelation, limiting the reliability of the SOC
predictions. Other African SOC maps had regions with missing data,
especially in dryland regions (Hengl et al., 2021; Hengl et al., 2015).
Meanwhile, the latest SOC map from SoilGrids 2.0 is a prediction of the
entire world, not Africa (Poggio et al., 2021). This global map might not
be able to capture the detailed local variations of SOC across Africa.

Here, we seek to investigate C hotspots and the interlinking of above-
and below-ground plant biomass C and SOC across Africa. Despite its
unique landscape configuration and varied climatic and vegetative dis-
tribution, the continent has been underrepresented in studies on plant
and soil C distribution patterns and dynamics. Unlike previous global C
modelling products, which have largely overlooked the distinct char-
acteristics of the African landscape, our study provides a more nuanced
understanding of the continental drivers of C dynamics. Africa con-
tributes ~7% of global C (Corbeels et al., 2019; Ontl and Schulte, 2012),
yet the underlying mechanisms that require urgent attention to drive
more C into the soil remain poorly understood. Through advanced sta-
tistical modelling, our research demonstrates a clearer understanding of
soil and plant C dynamics and processes across Africa’s varied envi-
ronmental conditions. Furthermore, the substantial threats facing many
ecosystems in Africa, such as deforestation and land degradation, this
knowledge plays a pivotal role in determining whether both plants and
soils share the same C hotspots or if separate protection strategies are
required for the conservation of plant and soil C when their hotspots do
not entirely coincide. For policymakers, the interest is to pinpoint
terrestrial C hotspots for C balance, pricing, or budgeting efforts (Ber-
retta, 2020; Fatichi et al., 2019; Mugabowindekwe et al., 2024). These
hotspots need to be effectively and transparently communicated; as
such, implementing large-scale C modelling approaches to generate
digital interactive products (e.g., maps) is invaluable. Our objectives
were to: (1) develop a high-resolution SOC map for Africa, (2) delineate
the terrestrial C (plant C compartments and SOC) spatial hotspots across
the continent, and (3) examine the interlinks between plant C and SOC
in Africa.

2. Methodology

To address the research objectives, we assembled a soil database of
>10,000 SOC concentration field observations. We then applied ma-
chine learning (i.e., Cubist) to generate a high-resolution (~250 m/
pixel) SOC map across Africa. Since the emphasis here was SOC, we first
generated our own continental SOC map rather than rely on existing
products (e.g., Africa Soil Information Service: AfSIS 250 m SOC map).
We integrated spatial features (latitude and longitude) in our machine
learning model. This way, our model would account for vast heteroge-
neity in sample locations across Africa. Moreover, the spatial features
would allow our SOCmodel to learn about geographic priors rather than
simply rely on the distributions of environmental covariates (e.g., cli-
matic variables, and terrain) to generate a prediction. Having generated
our high-resolution SOC map, we also obtained detailed above- and
below-ground plant biomass C maps (Spawn et al., 2020). Based on the
SOC, plant biomass C, and selected environmental driver (e.g., soil
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nutrients, land cover diversity) maps spanning Africa, we extracted
spatially representative data throughout the continent. This data was
used as input for our statistical and mechanistic models to understand
soil and plant C interlinks. It is worth noting that, environmental drivers
used to explain soil-plant C dynamics were selected based on expert
knowledge as some of the well-known drivers of the terrestrial C cycle.
Since soil processes vary greatly across scales, especially over a vast
landscape like Africa, we also studied similar interactions across a
continuum of spatial scales by aggregating all maps from high to low
scale. Newly aggregated maps were generated for the district and na-
tional levels which we refer to as intermediate and coarse scales
throughout this study. Aggregating maps into varying scales would help
with continental decisions and policy formulation affecting soil and
plant C. This is a similar strategy used by the European Union in several
areas (e.g., education, agriculture, economics) (European Union, 2018).
To achieve this, we follow a series of stages outlined in a workflow
(Supplementary Data Fig. 1). Detailed explanations for the different
modelling phases are fully provided in the following subsections.

2.1. SOC data

Our study used the latest harmonized World Soil Information Service
(WOSIS) SOC database at a scale of 1:100,000 (https://maps.isric.org/m
apserv?map=/map/wosis_latest.map). This database contains

thousands of profiles collected globally at various depths, ranging from
the surface to the subsoil, collected between 1920 and 2013 (Batjes
et al., 2020). Because the goal was to understand the relationships be-
tween SOC and plant C in Africa, we exclusively used SOC sampling
locations obtained in Africa, especially the topsoil samples at the 0–20
cm depth increment, as these are more likely to be influenced by recent
vegetation and environmental conditions. This selection resulted in n =

10,750 observations, used to estimate SOC in grams per kilogram (g/kg)
throughout Africa.

2.2. Environmental drivers for predicting SOC

The spatial variability, storage, and organic C sequestration potential
of soils are all driven by a combination of environmental factors that
may be represented as spatial predictors. Therefore, SOC was modeled
based on environmental drivers derived from terrain, Landsat, soil, and
climatic data. Some of these drivers, such as terrain and climatic data
(temperature and rainfall), have previously been used to successfully
model SOC across Africa (Hengl et al., 2021). A reference potential
evapotranspiration image at a spatial scale of 30 arc sec was obtained
from Zomer et al. (2022). Digital elevation data was based on Shuttle
Radar Topography Mission (SRTM) data, acquired at a spatial scale of
250 m, and downloaded via the Google Earth Engine (GEE) platform.
Hydrologic soil groups data (HYSOGs250m) (Ross et al., 2018); Landsat

Fig. 1. Soil organic carbon (SOC) model and map for Africa in g/kg. (a) SOC sampling locations and 250 m/pixel prediction. (b) The first round of environmental
drivers was used to model and map SOC. (c) SOC levels across a latitudinal gradient (plot uses the approximately n = 100,000 systematic grid synthetic sampling
locations proposed in the workflow), the red dotted line represents the equator which also aligns well with the SOC spatial distribution map. (d) Hypothetical a priori
pathways between secondary environmental drivers while assessing SOC and plant biomass C relationships for all spatial scales. (e) Variable importance plot showing
each environmental driver’s contribution or influence on the Cubist algorithm.
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8 image collection 1 Tier 18-day normalized difference vegetation index
(NDVI) composite for the period 2014 to 2022 (mean estimate), pro-
duced at a 250 m spatial scale, was downloaded via the Google Earth
Engine (GEE) platform. Hydrologic soil groups are derived from textural
classes; hence, they also provide insights into different soil types within
the modelling channel. For instance, hydrologic soil group ‘A’ corre-
sponds to soils that are primarily sandy (Ross et al., 2018). Hydrological
soil groups significantly influence SOC variability by determining the
rates of water infiltration, runoff, and erosion potential associated with
different soil groups. In essence, these influence processes linked to OM
decomposition by soil microbes and C input into soils owing to varia-
tions in water infiltration and runoff capacities (Védère et al., 2022). We
obtained the long-term mean annual rainfall and temperature data
(1970 to 2000). Such historical data allows us to explicitly account for
past climatic conditions and their potential influence on recent SOC
variability. Climatic legacies have a major effect on SOC in terrestrial
ecosystems (Delgado-Baquerizo et al., 2017). To incorporate spatial
context the oblique geographic coordinates approach by Møller et al.
(2020) generated only the latitude and longitude coordinate equiva-
lences. All environmental drivers for the African continent were aggre-
gated to a common 250m spatial scale. The full details on the first-round
drivers can be found in Supplementary Data Table 1.

2.3. High-resolution predictive modelling of SOC

Soil observational data were gathered from n = 10,750 locations and
combined with environmental drivers using a digital soil mapping
(DSM) framework (McBratney et al., 2003). The dataset was cleaned and
partitioned into training (90 %) and validation (10 %) sets. The SPlit
approach, which considers the distribution of the data, was used to
ensure representative subsamples for both sets (Joseph and Vakayil,
2022; Kebonye, 2021; Kebonye et al., 2023a). This was implemented
using the SPlit package in R (RStudio Team, 2020). In addition, a Cubist
model was utilized for SOC prediction across Africa, leveraging its
computational efficiency, better interpretability, and adaptability to
diverse data types (Quinlan, 1992) than the common Random forest
model. This model has been widely applied in different DSM projects (e.
g., Henderson et al., 2005; Viscarra Rossel et al., 2015; Walden et al.,
2023). The model’s hyperparameters were optimized using 10-fold
cross-validation with 10 repeats, selecting the model with the lowest
RMSE as optimal. This process was executed using the caret package in R
(Kuhn et al., 2023). To evaluate the accuracy of our final SOC model, we
used the coefficient of determination (R2), concordance correlation co-
efficient (CCC), root mean square error (RMSE), and bias.

Our final model (i.e., with the lowest RMSE), fitted with all the data,
and incorporating geographic positions (i.e., latitude and longitude),
was used to create a SOC map with a resolution of ~250 m/pixel. We
also computed entropy estimates per pixel for our SOC prediction based
on a co-occurrence matrix approach (Haralick et al., 1973). These esti-
mates, based on spatial relationships between pixel values, provided a
general indication of regions to expect high and low uncertainty. High
and low entropy values correspond to high and low uncertainty esti-
mates, respectively. Entropy estimates account for uncertainty in soil
classification maps (i.e., discrete) (Zhu, 1997). According to Dai and
Chen (2012), entropy can also be estimated for continuous cases. By
continuous here we mean spatially continuous variables like SOC.
Finally, to ensure the reliability of our map product, we assessed spatial
autocorrelation (SAC) in the predictions using model residuals. Assess-
ing spatial autocorrelation allowed us to validate if our model accurately
represented reality, which is critical for map interpretation. This method
has been used in several DSM projects to account for SAC across different
spatial scales (Chevalier et al., 2021; Craven et al., 2020). Here, we used
aMonte Carlo simulation (Wadoux and Heuvelink, 2023) to run a spatial
autocorrelation function for Euclidean distances of 500 km, resulting in
a correlogram plot (Nol et al., 2010). We used a sample size of n = 500
runs, deemed optimal for achieving a near 1:1 line of best fit on a scatter

plot (Nol et al., 2010). A 500 km distance was considered relevant since
it captures the detailed changes at the landscape scale which are of in-
terest in this study. In this study, we consider the 250 m/pixel spatial
scale as the fine-scale SOC map for Africa, which was further aggregated
to district and national levels, the intermediate and coarse scales
respectively. This aggregation aids in the development of C conservation
policies. All SOC modelling and mapping analyses were conducted using
R and QGIS, both of which are Free and Open-Source Software (FOSS).

2.4. Linking soil and plant C across Africa

Following the creation of our SOC map, we explored the link be-
tween plant and soil C in Africa, focusing on identifying hotspots under
different environmental conditions. We considered plant biomass C
alongside secondary drivers, including regional factors such as soil
properties and land cover, to fully understand these links and underlying
soil processes. The plant biomass C estimates, including above-ground
biomass carbon (AGBC) and below-ground biomass carbon (BGBC),
both at a spatial scale of 300 m, were obtained from Spawn et al. (2020).
For total plant biomass carbon analysis, AGBC and BGBC estimates were
combined (AGBC + BGBC). The aspect was derived along with previous
terrain derivatives (elevation and slope). Latitude was also used to
capture landscape changes associated with variations in latitudinal
gradients. A 100 m scale land cover image for 2015 (Buchhorn et al.,
2020) was converted to alpha diversity via the Shannon–Wiener index in
R (Rocchini et al., 2021), generating a continuous variable to represent
land cover diversity. The land cover diversity is now represented as a
new image with pixel values ranging from zero (i.e., homogeneous or no
diversity regions like the Sahara) to at most two representing the highest
(i.e., heterogeneous or diverse regions like Central Africa) (Martínez-
Núñez et al., 2023). Soil properties, including clay, nitrogen, pH, and
phosphorus were obtained from the ISRIC – World Soil Information and
ISDA soil databases (Hengl et al., 2021; Hengl et al., 2015). Rainfall
seasonality, which captures the irregularities in rainfall for a normal
year, was obtained from the WorldClim database (Fick and Hijmans,
2017). Soil respiration, which is the amount of CO2 released from the
soil surface into the atmosphere, was also obtained to account for soil
microbial and plant root activities (Warner et al., 2019). Supplementary
Data Table 1 contains complete information on these secondary drivers.

Lastly, the previously created SOC map was used as a response var-
iable for each subsequent mechanistic and statistical modelling process.
To capture as much spatial variability of the landscape as possible, we
initially implemented regular sampling without replacement to generate
approximately n = 100,000 synthetic sampling locations across the
entire African continent. These sampling locations were then intersected
with a raster stack that included all the secondary environmental
drivers, above- and below-ground plant biomass C, and the SOC map.
This process was first executed for the fine scale, followed by the in-
termediate and coarse scales, in that order (refer to Supplementary Data
Fig. 1, stage 4). This approach facilitated the extraction of new sampling
location datasets from the raster stacks for each spatial scale (see Sup-
plementary Data Figs. 2, 3, and 4).

2.5. Mechanistic multivariate modelling

Structural equation models (SEMs) are mechanistic multivariate
approaches used to describe pairwise relationships between variables
while also delivering an intuitive graphical output illustrating networks
of these relationships (Eisenhauer et al., 2015). In our case, this was the
pairwise relationships between SOC and each of the plant biomass C
(AGBC, BGBC, and the AGBC + BGBC = total plant biomass C) in the
presence of other selected drivers (i.e., secondary drivers) across spatial
scales. In each case, a priori hypothetical model (Fig. 1d), considered to
be a baseline saturated model, was used to derive all the SEMs in this
study. It is considered a saturated model since it is comprised of fully
connected paths. However, such a saturated model usually results in a
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poor Chi-square fit (p < 0.05) because of the complexity of variable
interactions thus, requiring further simplification to improve fitting.
Initially, based on the saturated model, plant biomass C estimates were
individually related to SOC while also incorporating other secondary
drivers per spatial scale. Each SEM model would initially be assessed
based on standard goodness of fit metrics including the Chi-square, p-
value, root mean square error of approximation (RMSEA), and
comparative fit index (CIF; Siles et al., 2023). Since the aim is to obtain a
good-fitting SEM model, the goodness of fit metrics guided the need to

perform a re-run of each analysis to obtain optimal results based on n =

1000 bootstraps. For generating optimal results, SEMs need to have p >

0.05, RMSEA close to 0, and CFI close to 1 (Eisenhauer et al., 2015). The
process of obtaining optimal SEM results involved the systematic
removal and or replacement of predictor variables (i.e., secondary
drivers) while ensuring the SEM model does not vary much from the
initial hypothetical model. For this, predictors with predictor variable
modification indices (MI) of >10 were considered for either removal or
replacement after each SEM re-run (Garrido et al., 2022). For full details

Fig. 2. Robust standardized effect sizes from structural equation models (SEMs) showing the pairwise relationships between soil organic carbon (SOC) and the
different secondary environmental drivers across the various spatial scales, 250 m/pixel (fine), district (intermediate) and national (coarse). [Note: All plots in the
same columns a, b, and c represent results for fine, intermediate, and coarse scales separately. Moreover, across rows, the first plots represent results associated with
above-ground biomass carbon (AGBC) followed by total plant biomass carbon and below-ground biomass carbon (BGBC). The SEM colours only differentiate the
negative (olive) from the positive (tan) standardized effect sizes. All through, the error bars on the effect sizes are the 95 % confidence intervals (CI).]

Fig. 3. The soil organic carbon (SOC) maps for fine (a), intermediate (b), and coarse (c) scales used as response variables in the Generalized Additive Models (GAMs).
[Note: Underneath the maps are their density plots showing the differentiation in SOC level distributions for each map. The density plots per spatial scale were
generated from the approximately n = 100,000 systematic grid synthetic sampling locations proposed in the workflow.]
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on the SEM approach, we refer to previous studies, such as Eisenhauer
et al. (2015) and Garrido et al. (2022). The lavaan package in R was used
to run the SEM analyses on standardized datasets (with a zero mean) for
each spatial scale to test the a priori hypothetical model (Rosseel, 2012;
Siles et al., 2023). The standardized datasets ensured both response
(SOC) and predictor variables ranged between 0 and 1 representing the
smallest and largest values respectively.

2.6. Statistical modelling

For the statistical modelling, we applied Generalized Additive
Models (GAMs), which are semi-parametric, non-linear, and able to
characterize the complex relationships between the SOC and the
respective plant biomass C, as well as the other environmental drivers.
GAMs provide reasonable interpretability, allowing for coefficients to be
expanded as smoothing functions for each of the predictors applied (de
Brogniez et al., 2015). Like the SOC modelling, datasets for each spatial
scale were partitioned into training (90 %) and independent validation
(10 %) sets based on the SPlit approach. The GAMs were implemented
using the gam function based on the gam package in R (Hastie, 2023). It
is worth noting that, aside from collinearity, the selection of the sec-
ondary drivers was based on an a priori motive to particularly include
already known SOC drivers. We did not employ the Cubist model in
place of GAM since it is more difficult to interpret than a GAM. Also,
despite its intuitive nature, Cubist necessitates further interpretation of
results which are usually decisions or rules, typically in the form of in-
dividual multiple linear regression equations (Khaledian and Miller,
2020), whereas only a single 2D scatter plot associated with a GAM
directly reveals the relationship between the response and each of the
predictors of interest. As a result, GAMs may be considered to give first-
hand insight into variable interactions. An additional benefit of the
GAMs is that they are less computationally demanding than the Cubist
model.

Despite the bents of GAMs, they are sensitive to multicollinearity;
hence, variance inflation factor (VIF) analysis was carried out with a VIF
threshold of 10, of which only plant biomass C would need to be
excluded as per the results (Supplementary Data Table 2). All other
predictors had their VIF values below the threshold of 10. Deleting the
plant biomass C predictors following the GAM results would not allow us
to explain how each relates to SOC in the context of other drivers.
Therefore, on this account, we did not remove any predictors to ensure
that we answered the current study objectives. In general, with SEM, we
were able to develop and evaluate hypothesis-based models driven by

expert knowledge that are mostly linear. The GAM, on the other hand, is
a hypothesis-free machine learning technique that allows us to capture
non-linear variable connections while acquiring knowledge on how each
driver fully influences the SOC.

2.7. Major overlaps in the hotspots of soil and plant biomass C

A bivariate mapping approach that we recently introduced for DSM
purposes (Kebonye et al., 2023b) was used to assess the spatial overlaps
between SOC and plant biomass Cs across different spatial scales. This
method simplifies the depiction of spatial relationships between SOC
and plant biomass C, exposing the primary spatial C hotspots of interest
between these variables that may be used in decision-making on a
landscape scale. By C hotspots, we refer to regions across Africa where
significantly high levels of C are expected, both plant and soil-based,
than their surroundings. These hotspots are important for C cycling,
climate change mitigation, and ensuring its balance in terrestrial eco-
systems. Various studies have developed frameworks to identify and
investigate C hotspots and their dynamics worldwide (Hobley et al.,
2018; Mugabowindekwe et al., 2023; Ottoy et al., 2022; Timilsina et al.,
2013). We applied a four-color palette matrix comprising four major
hotspots between SOC and each plant biomass C. The four major hot-
spots denoted low–low (grey), low–high (blue), high–low (yellow), and
high–high (pompadour) values respectively. We clarify that the low–low
and high–high values are thresholds that reflect the hotspots likely to
have the lowest and highest values for each scenario, rather than the fact
that only the lowest and highest levels exist here. To set particular
thresholds to determine what constituted low and high values for each
variable, we used a quantile scale break for the two-by-two color pal-
ettes per variable for visual simplicity (Bivand et al., 2023). Despite the
current grouping being coarse, considering a large-scale territory like
Africa, which maintains a diversity of ecosystem types and shows
considerable spatial heterogeneity, it was only fair to keep four main
classes given the constraints of bivariate mapping already outlined
(Kebonye et al., 2023b). We refer to our previous study on the full ex-
planations regarding the bivariate mapping approach (Kebonye et al.,
2023b). The R package classInt was important for this procedure (Bivand
et al., 2017) while we applied the R code from: https://gist.github.com/
scbrown86/2779137a9378df7b60afd23e0c45c188.

3. Results and discussion

Our model-based findings show a fundamental connection between

Fig. 4. Soil organic carbon (SOC) and plant biomass carbon (C) overlap. [Note: The maps represent results associated with above-ground biomass carbon (AGBC)
followed by total plant biomass carbon and lastly below-ground biomass carbon (BGBC). Overlaps represent hotspots showing low–low (grey), low–high (blue),
high–low (yellow) and high–high (pompadour) values respectively. The bivariate maps only show the fine-scale overlaps while the intermediate and coarse scale
maps are shown in the Supplementary Data Fig. 10.]
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soil and plant biomass C (AGBC and BGBC) in Africa and further suggest
that soil and plant C have similar hotspots explicitly delineated in the
tropical zone. These findings are crucial for understanding the biogeo-
chemical cycles. Additionally, they are essential for addressing concerns
such as climate change mitigation, biodiversity conservation, sustain-
able agriculture practices, and landscape planning. We anticipate that
given the fine-scale (~250 m/pixels) delineation of terrestrial carbon
hotspots in digital form, it should be feasible to identify specific regions
of interest (e.g., with levels higher than the 75th or 95th percentile) for
initiating C or nutrient monitoring benchmarking efforts for various
purposes, such as agriculture and landscape planning. This level of detail
was not achievable with individual soil and plant carbon maps.
Furthermore, our study has shed light on the mechanisms linking soil
and plant C across the continent, which were previously unclear due to
localised sampling campaigns.

3.1. SOC spatial variability and model assessment

Our study suggests that the majority of soil C in Africa is located
within tropical regions (Fig. 1). The spatial variability of SOC shows a
substantial gradient along the southern to the northern coasts of Africa
(Fig. 1a and c) and high levels of SOC are primarily found around the
tropics or equator in Fig. 1c (marked by a red dotted line). Both the
Saharan region in the northern part of Africa and the Kalaharian region
in the southern part of Africa have relatively lower SOC levels owing to
their arid to hyper-arid climatic conditions (Richards et al., 2023),
which limits plant productivity and, consequently, C inputs into the soil.
Moreover, these regions only have a few sampling locations since they
are mostly deserts. The environmental drivers used to map SOC varied
spatially across Africa (Fig. 1b). Overall, our model suggests that po-
tential evapotranspiration is the most important variable explaining the
spatial patterns of SOC across Africa (Fig. 1e). This is evident as the SOC
map closely mirrors that of potential evapotranspiration, where regions
with high potential evapotranspiration values correspond to low SOC
levels. High potential evapotranspiration leads to high soil respiration
and OM decomposition resulting in lower SOC, which is typical of drier
regions with high temperatures (Nyberg and Hovenden, 2020). Mean-
while, in tropical settings with stable climatic conditions, constant litter
input may raise SOC content (Bradford et al., 2016). This is due to the
continuous addition of organic matter to the soil, which can enhance soil
quality and water-holding capacity, and potentially contribute to C
sequestration. The hydrological soil groups followed after potential
evapotranspiration in influencing the spatial variability of SOC in Africa.
This is an important driver of SOC because it reflects the regional
characteristics of soils in general and conservation practices and water
runoff potential in particular (Baumann et al., 2009).

We also found that NDVI, a metric reflecting vegetation cover and
greenness and positively associated with vegetation vigor, played a role
in predicting the spatial distribution of SOC, where higher NDVI values
corresponded to higher SOC levels. Elevation played a more significant
role in the SOC model than slope, confirming a previously established
finding in an earlier study (Hengl et al., 2015). We observed some re-
gions where a noticeable spatial correspondence between high SOC and
elevation levels stands out, such as in southern (e.g., South Africa) and
eastern Africa (e.g., Ethiopia).

Regarding the model accuracy, the results suggest a reasonable
model fit with a concordance of 0.66 (Supplementary Data Fig. 5).
Furthermore, the current model’s RMSE of 17.17 is lower compared to
the SoilGrids 250 m and SoilGrids 2.0’s RMSE of 36.48 (Poggio et al.,
2021). As for the Cubist model residuals, there was no evidence of
spatial autocorrelation which means the deterministic model captured
the true spatial variability of SOC (Supplementary Data Fig. 5). The SOC
map generated in this study closely resembles the SoilGrids 2.0, which
also includes Africa. Nonetheless, the present mapping effort in-
corporates geographical priors in the SOC prediction while also testing
for spatial autocorrelation in SOC distribution across Africa, a factor not

explicitly addressed in the previous attempt. Moreover, our study pro-
vides better details into the spatial variability of SOC compared to
earlier efforts (Supplementary Data Fig. 6). As expected, we are more
uncertain about very high SOC estimates for example (Supplementary
Data Fig. 11), in the western (e.g., Côte d’Ivoire, Ghana, Guinea) and
central parts of Africa (e.g., Democratic Republic of the Congo, Burundi,
Rwanda). Therefore, while developing policies and initiating strategies
to safeguard SOC, these regions should be cautiously handled. Overall,
our uncertainty representation for Africa closely mirrors that of Soil-
Grids 2.0, as does the SOC map (Poggio et al., 2021). For the plant
biomass C maps, uncertainty is relatively consistent in regions with very
high soil C levels but is more obvious in regions between the Sahara
desert and the tropical zone (Spawn et al., 2020). According to the
Köppen climate classification, these regions between the Sahara desert
and the tropical zone have semi-arid climatic conditions (i.e., BSh) (Beck
et al., 2018).

3.2. Interlinking soil and plant biomass C across Africa

Our results revealed that plant biomass and soil C are highly corre-
lated across Africa, offering promising prospects for the shared conser-
vation of C storage in the African continent. Our structural equation
models enabled us to explore the intricate relationships between plant
biomass C and SOC, as well as various other environmental drivers
(Fig. 2 and Supplementary Data Tables 3, 4, and 5). We identified soil
nitrogen is highly correlated with SOC regardless of spatial scale since
soil nitrogen generally controls C productivity (Vuichard et al., 2019)
(Fig. 2 and Supplementary Data Fig. 7). Increased soil nitrogen avail-
ability can enhance plant growth and the amount of OM returned into
the soil, leading to an overall increase in SOC levels (Wu et al., 2022).
Conversely, high SOC levels can promote nutrient release through
mineralization and create favorable conditions for plant access to soil
nitrogen, contributing to improved soil fertility and plant productivity.

Our analyses further reveal that both AGBC and BGBC have a sig-
nificant influence on SOC across Africa, especially for intermediate and
coarse scales (Fig. 2, Supplementary Data Fig. 8). Thus, both are ex-
pected to contribute significantly to the observed SOC variability in
Africa. Litter inputs from above-ground sources (e.g., leaves) have the
potential to contribute to the accumulation of OM in soils through litter
decomposition, consequently leading to an increase in SOC levels (Xu
et al., 2022). Besides that, we observed that other environmental
drivers, such as soil pH, land cover diversity, rainfall seasonality, and
soil respiration, also play significant roles in facilitating the integration
of C derived from litter into the soil, especially for coarse scale. For
instance, we know that as pH increases (towards neutral or slightly
alkaline), microbial activity tends to be more efficient, leading to higher
levels of OM decomposition and, consequently, higher SOC levels (Zhou
et al., 2020). Land cover diversity, however, influences regional
microclimatic conditions, water circulation or availability, and nutrient
cycling (Li et al., 2022), all of which we expect to affect AGBC.

Regions with diverse land cover types can potentially enhance SOC
levels through varied C inputs or sources. This phenomenon is observed
in countries like Morocco and Ethiopia, where diverse land cover types
(e.g., croplands, forests, and shrublands) coupled with sustainable local
land management practices (Etsay et al., 2019; Kusi et al., 2020),
contribute to high SOC levels, as demonstrated in the earlier map
(Fig. 1a). Similarly, BGBC enhances SOC storage through C inputs from
root litter or rhizodeposits. Importantly, root litter tends to bind soil
particles together, promoting the formation of soil aggregates. These
aggregates act as a protective barrier against microbial degradation,
thus enhancing SOC stability and long-term retention within the soil
(Cotrufo et al., 2015). Like AGBC, the environmental drivers mentioned
earlier (e.g., precipitation) also play crucial roles in shaping the influ-
ence of BGBC on SOC (Chen et al., 2018).

In addition to the influence of soil pH, as mentioned earlier, high
rainfall seasonality positively affects SOC levels. The increased and
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fluctuating moisture conditions associated with high rainfall seasonality
promote robust plant growth, resulting in greater OM input into the soil
through root litter and root exudates. However, increased moisture
availability may also limit microbial activity, decelerating the decom-
position of organic materials and the build-up of stable SOC (Stark and
Firestone, 1995). Our SEM plots for total plant biomass C depicted ex-
pected common factors, considering both AGBC and BGBC influence
SOC, albeit through distinct pathways. Nonetheless, we graphed the
relationship of each with SOC separately to highlight marginal varia-
tions between the two.

We further illustrated how the influence of plant biomass C on SOC
varies across different spatial scales by applying a simple and inherently
intuitive GAM. As earlier mentioned, with the GAM, we precisely
examined the non-linear relationships between the plant biomass C,
environmental drivers, and their associations with SOC across Africa’s
vast environmental gradient (Supplementary Data Fig. 9). Our GAM
results also confirmed the high dynamic and complex SOC processes
across massive landscapes. We found that across all spatial scales, AGBC
and BGBC shared consistent relationships with SOC. Because of the
computation of the root-to-shoot ratios, we expected a strongly positive
link between above- and below-ground biomass C, supporting such
analogous relationships (Cairns et al., 1997). However, between the two
plants biomass C and SOC, both the fine and coarse scales showed
monotonous positive trends relative to monotonous negative trends
observed for the intermediate scale (Supplementary Data Fig. 9). Our
results ratified the already identified trade-offs between different plant
biomass C relationships with SOC in literature (de la Cruz-Amo et al.,
2020). We attributed these variations in trends to the complex, scale-
dependent soil and ecosystem processes. In addition, we have estab-
lished a consistent linear relationship between soil nitrogen and SOC
across various spatial scales, reinforcing our earlier SEM results.
Furthermore, our observations also indicate that environmental drivers,
such as rainfall seasonality patterns, soil pH, land cover diversity, and
soil phosphorus have distinct and influential effects on SOC, contingent
upon the spatial scale. These findings show that soil and ecosystem
processes vary greatly. The GAM accuracy results for each spatial scale
in Supplementary Data Table 6 are all indicative of robust and gener-
alizing models.

Our maps in Fig. 3 show how the distribution of SOC varies across
scales while still maintaining fairly consistent spatial patterns, a com-
parable finding to earlier studies, for example (Holmes et al., 2005). We
used each SOC map as a response variable in our GAMs. Our maps show
relatively high SOC levels along the tropics while decreasing towards the
north and south. As expected, we observed that regions with high SOC
corresponded to high soil nitrogen levels (Supplementary Data Figs. 2, 3,
and 4). While we examined the map at a coarse scale, we observed that
variation in SOC becomes more evident, highlighting the cumulative
low, moderate, and high SOC levels across different countries (as shown
in Fig. 3c). For example, in the northern region of the continent, SOC
ranged from ≤2.6 to 16.3 g/kg. We noticed Morocco exhibited a high
SOC range between 13.7 and 16.3 g/kg, confirming the presence of
active irrigation and improved cropping systems in this Mediterranean
region (Ruiz-Peinado et al., 2013). We infer that in arid regions where
SOC levels are low, implementing sustainable soil management prac-
tices locally may substantially enhance the overall SOC accrual and
storage across landscapes. According to Baveye (2023), this is an
endeavor to spark a new paradigm that focuses on SOC modelling
following a bottom-up perspective or approach. That is, beginning at a
highly detailed level (e.g., microscale, ecosystem-scale) and eventually
expanding process understanding to encompass broader scales (e.g.,
massive landscapes, continents, etc.). This approach, if implemented in a
sufficient number of study sites across Africa, should help address
certain limitations associated with large-scale SOC models.

Lastly, we observed that the spatial overlaps between SOC and plant
biomass C maintained similar patterns across different spatial scales
(Fig. 4, Supplementary Data Fig. 10). Landscapes with high SOC and

high plant biomass C levels were commonly found in the tropics
(pompadour), which suggests that high plant biomass, including both
AGBC and BGBC, is invariably linked to higher SOC levels. This rela-
tionship underscores the significance of vegetation and its role in the
accumulation and storage of soil C. Furthermore, certain areas, partic-
ularly in the southern regions of Africa, exhibited high AGBC but had
low SOC content (blue). These regions are characterized by predomi-
nantly sandy soils with less protected organic matter content, making
them more susceptible to microbial decomposition and soil respiration.
This vulnerability can potentially lead to reduced SOC levels, even in
situations where there are substantial inputs of plant C. Furthermore,
activities such as land clearance, fragmentation, or disturbance may be
lowering SOC levels (Mani et al., 2021; Wang et al., 2023). Additionally,
the absence of sustainable soil management practices, such as insuffi-
cient OM addition or erosion control, may limit SOC accumulation, even
in the presence of ample vegetation. Again, we noted some regions with
exclusively high SOC levels (yellow), which we assumed related to
different C turnover processes. It would be interesting to investigate
these regions further to understand the environmental conditions that
might favor SOC accumulation. For example climate, soil texture, pH,
and microbial activity (e.g., microbial carbon use efficiency – CUE,
necromass, etc.) (Cotrufo et al., 2015; Tao et al., 2023) and others. For
land managers and policymakers, these maps offer a chance to enhance
their understanding of the spatial patterns, interlinks, and changes be-
tween the plant biomass C and SOC at the landscape level. Specifically,
our results may support decisions concerning land use, ecosystem
regeneration, and sustainable soil management practices geared to-
wards improving SOC storage, accumulation, and long-term soil health.
Additionally, our bivariate maps are instrumental for general ecosystem
monitoring and conservation, as both plant biomass C and SOC in Africa
call for joint conservation and safeguarding to mitigate challenges allied
to climate change globally. It is worth noting that, despite the use of SOC
content relative to stocks, the findings for either content or stocks mirror
each other. We also present evidence from SEM analysis using SOC
stocks (refer to Supplementary Data Fig. 12).

4. Conclusion

Overall, our modelling results provide compelling evidence that both
plant and soil C exhibit major hotspots across Africa. This suggests that
stakeholders—including policymakers, scientists, and environ-
mentalists—must prioritize the simultaneous conservation of both plant
biomass C and SOC, as this is crucial for mitigating global climate
change. Furthermore, the advanced modelling techniques used in this
study not only validate existing knowledge of Africa’s tropical C hot-
spots but also underscore the power of statistical and mechanistic
modelling in helping understand terrestrial C processes over large scales.
This knowledge is indispensable for effective land-use planning,
ecosystem restoration, and the advancement of sustainable soil man-
agement practices to ensure long-term soil health and conservation in
Africa.
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Antonijević, O., Glušica, L., Dobermann, A., Haefele, S.M., McGrath, S.P., Acquah, G.
E., Collinson, J., Parente, L., Sheykhmousa, M., Saito, K., Johnson, J.-M.,
Chamberlin, J., Silatsa, F.B.T., Yemefack, M., Wendt, J., MacMillan, R.A.,
Wheeler, I., Crouch, J., 2021. African soil properties and nutrients mapped at 30 m
spatial resolution using two-scale ensemble machine learning. Sci. Rep. 11, 6130.
https://doi.org/10.1038/s41598-021-85639-y.
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